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To adapt to a wide range of physically demanding environmental
conditions, biological systems have evolved a diverse variety of
robust skeletal architectures. One such example, Euplectella aspergil-
lum, is a sediment-dwelling marine sponge that is anchored into the
sea floor by a flexible holdfast apparatus consisting of thousands of
anchor spicules (long, hair-like glassy fibers). Each spicule is covered
with recurved barbs and has an internal architecture consisting of a
solid core of silica surrounded by an assembly of coaxial silica cylin-
ders, each of which is separated by a thin organic layer. The thickness
of each silica cylinder progressively decreases from the spicule’s core
to its periphery, which we hypothesize is an adaptation for redistrib-
uting internal stresses, thus increasing the overall strength of each
spicule. To evaluate this hypothesis, we created a spicule structural
mechanics model, in which we fixed the radii of the silica cylinders
such that the force transmitted from the surface barbs to the re-
mainder of the skeletal system was maximized. Compared with
measurements of these parameters in the native sponge spicules,
our modeling results correlate remarkably well, highlighting the ben-
eficial nature of this elastically heterogeneous lamellar design strat-
egy. The structural principles obtained from this study thus provide
potential design insights for the fabrication of high-strength beams
for load-bearing applications through the modification of their in-
ternal architecture, rather than their external geometry.

structure–property relationship | structural biomaterial | biocomposite |
variational analysis

Biological structural materials such as nacre, tooth, bone, and
fish scales (1–9) often exhibit remarkable mechanical prop-

erties, which can be directly attributed to their unique structure
and composition (10–15). Through the detailed analysis of these
complex skeletal materials, useful design lessons can be extracted
that can be used to guide the synthesis of synthetic constructs with
novel performance metrics (16–20). The complex and mechan-
ically robust cage-like skeletal system of the hexactinellid sponge
Euplectella aspergillum has proved to be a particularly useful model
system for investigating structure–function relationships in hier-
archically ordered biological composites (21–25). The sponge is
anchored to the sea floor by thousands of anchor spicules (long,
hair-like skeletal elements), each of which measures ca. 50 μm in
diameter and up to 10 cm in length (Fig. 1 A and B). The distal
end of each anchor spicule is capped with a terminal crown-like
structure and is covered with a series of recurved barbs that secure
the sponge into the soft sediments of the sea floor (Fig. 1C). The
proximal regions of these spicules are in turn bundled together
and cemented to the main vertical struts of the skeletal lattice.
These spicules contain an elastically heterogeneous, lamellar in-

ternal structure and are composed of amorphous hydrated silica.
Surrounding a thin organic axial filament, which is responsible for
determining the spicule’s core geometry, is a solid silica core. This
core is further surrounded by an assembly of ca. 10–50 concentric
cylinders (Fig. 1D), each of which is separated by a very thin organic
interlayer (22), and previous studies have demonstrated that this
design strategy contributes to a significant increase in work of frac-
ture (22). These silica cylinders decrease in thickness from the

spicule’s core to the periphery (22–24) and, inspired by their internal
geometric regularity, the goal of this study was to explore additional
mechanical benefits of the spicule’s laminated architecture. Specif-
ically, we explored the possibility that the structural feature of de-
creasing silica cylinder thickness is an adaptation for increasing the
strength of spicules under a wide range of external loading regimes.
To evaluate our hypothesis, we built a structural model for these

spicules and compared the idealized sequence of silica cylinder
radii from our model to the measured radii sequences from the
native spicules. In our model, we quantify the spicule’s ability to
function as an effective structural element by its load capacity,
which we define as the largest tensile force that the spicule can
transmit from its surface barbs to the skeleton without failing.
Because E. aspergillum is anchored into the sea floor, any loads on
the sponge’s body must be balanced by reaction forces supplied by
the sediments. It is clear from the macroscale construction of the
skeleton (22) that these reaction forces are transmitted directly to
the skeleton via the anchor spicules. Although the distal region of
each spicule that is located beneath the sediment surface is sub-
jected to a diverse set of mechanical loads, from the shape and
position of the surface barbs, we infer that the spicules are pri-
marily loaded at the barbs by a system of forces that act in the
proximo-distal direction (Fig. 1C).
In our model, the spicule’s failure criterion is defined by the

following three assumptions: (i) The onset of spicule failure
begins when any of the individual silica cylinders fail or the
spicule’s core fails. (ii) An individual cylinder fails when the
normal component of the traction σ33 on its cross-section ex-
ceeds its bulk tensile strength. The failure of the spicule’s core is
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similarly defined. And (iii) the cylinders and the core have the
same bulk tensile strength σst .
Assumption iii contrasts with classical theories of strength in

brittle structures, in which strength depends on size. For exam-
ple, theories based on linear elastic fracture mechanics (LEFM)
predict that strength scales as size−1=2 (26–28). However, modern
developments have brought attention to the fact that if a struc-
ture’s characteristic dimension is smaller than a critical length
scale, which is a characteristic of the structure’s material and
geometry, then strength no longer depends on size (14, 29). In SI
Text, section S6 we show that the silica cylinder thicknesses are
smaller than an estimate of the cylinders’ critical length scale.
In traditional theories of homogeneous beams [e.g., Euler–

Bernoulli (30)], σ33 is assumed to be an affine function over the
beam’s cross-section. As an extension, in our model, we allow σ33
to be a different affine function over the cross-section of each of
the individual silica cylinders. Although the precise mechanical
properties of the compliant organic interlayers have yet to be
fully characterized, we incorporate their potential contributing
effect into our model by assuming that σ33 can be discontinuous
across adjacent silica cylinders. The assumption that the inter-
layers are compliant compared with the silica cylinders is sup-
ported through recent mechanical characterization of spicules
from Monorhaphis chuni (31, 32), which is closely related to
E. aspergillum, contains a similar bulk chemical composition (25),
and is similarly laminated.
In line with our hypothesis that the spicule’s internal structure

enhances its strength in tensile and bending loading regimes, we
set the free parameters in the affine functions characterizing σ33
on the spicule’s cross-section Ω to be equal to the values at which
the spicule’s load capacity is maximized. Similarly, we set the radii
of the silica cylinders to be equal to values that maximize the load
capacity. The optimal-strength radii sequence thus designates
this sequence of optimal values of the silica cylinder radii. In the
present study, we provide a rigorous proof that in our model, the
load capacity for the optimal-strength radii sequence is greater
than the load capacity for any other possible sequence of radii.

The spicule’s load capacity in our model is always greater than
that of a homogeneous beam and increases with the number of
silica cylinders up to a maximum gain of 25%. In a homogeneous
Euler–Bernoulli beam, the outer region of Ω carries the greatest
load, whereas the inner region carries the least. This is due to the
affine variation of σ33 over Ω, for which σ33 attains a maximum at
the periphery of Ω. Thus, per the failure criterion in our model,
the homogeneous beam would fail when σ33 exceeds σst at the
periphery. If σ33 varied more uniformly over Ω while still being
greatest at the periphery, the structure would again fail when σ33
exceeds σst at the periphery. However, in this case, the net load
transmitted across Ω (the load capacity) would be greater be-
cause the interior region of Ω would be transmitting a larger
load. This is precisely the mechanism through which the load
capacity in our spicule model is increased. By simultaneously
allowing σ33 to be discontinuous and by increasing the number
of silica cylinders, we effectively increase the uniformity of σ33
over Ω.
Remarkably, we find that the thicknesses in the optimal-

strength radii sequence decrease from the spicule’s core to the
periphery, an observation consistent with measurements made
on the actual spicules. We quantitatively compare the measured
radii sequences with the optimal-strength radii sequence and also
with several alternate radii sequences (Discussion, Comparison of
Measured and Optimal Radii Sequences). One of these alternate
sequences is from a different structural mechanics model in
which the strength of the cylinders varies as thickness−1=2. We
find that the optimal-strength radii sequence describes the
measured radii sequences the best.
The similarity of the optimal-strength radii sequence to the

measured radii sequences supports our hypothesis that the spi-
cule’s internal structure is an adaptation to increase the spicule’s
load capacity. However, considering that knowledge regarding
the formation of spicules in hexactinellid sponges is as yet in-
complete, it cannot be ruled out whether other factors, such as
growth processes, are also responsible for the spicule’s de-
creasing-thickness lamellar structure.

Results
Measurements of Silica Cylinder Radii.The sectioned anchor spicules
from E. aspergillum contained between 14 and 40 silica cylinders
each. In most images, the complete boundaries of all of the cyl-
inders were not easily identifiable due to the complex fracture
patterns induced by sample sawing. Although this may have been
the case, we were able to measure the radii of more than 80%
of the total number of cylinders in more than 90% of the spicules.
In the remaining 10% of the spicules, we succeeded in measuring
at least 65% of the total number of cylinders. See SI Text, section
S7 for details. We also ensured that in every image, the measured
radii were from a consecutive set of silica cylinders starting from
the innermost one, thus permitting the comparison of the mea-
sured radii sequences with the optimal-strength radii sequence
from our model.
Consistent with previous observations (22–24), there was

a distinct reduction in silica cylinder thickness from the spicule’s
core to its periphery (Fig. 2 and Fig. S1). See SI Text, section S7
for a statistical analysis of the cylinder thickness vs. cylinder
number data.

Spicule’s Load Capacity. We model the spicule as a tight, coaxial
assembly of annular, cylindrical beams (30) with a single solid
beam at its center. If the spicule fails at the transverse cross-
section Ω, then the load capacity is equal to the tension T
transmitted across Ω just before failure. Here we assume that the
spicule transmits the greatest tension just before failure. The
tension across Ω is

A B C

D

Fig. 1. (A) Photograph of a skeleton of E. aspergillum showing the tuft of
root-like anchor spicules at the base. (B) A close-up of a group of anchor spi-
cules. (C) A scanning electron microscope (SEM) image of the distal end of an
anchor spicule, showing the spicule’s terminal crown-like structure and its re-
curved barbs. The dashed arrows schematically denote the forces that we as-
sume act on the spicule as it anchors the skeleton to the sea floor. Reproduced
with permission from ref. 23. (D) SEM image of an anchor spicule’s cross-section,
taken at a smooth proximal region along the spicule’s length.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1415502112 Monn et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1415502112/-/DCSupplemental/pnas.201415502SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1415502112/-/DCSupplemental/pnas.201415502SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1415502112/-/DCSupplemental/pnas.201415502SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1415502112/-/DCSupplemental/pnas.201415502SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1415502112/-/DCSupplemental/pnas.201415502SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1415502112/-/DCSupplemental/pnas.201415502SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1415502112


T =
Z
Ω

σ33 dx1dx2; [1]

where σ33 is a component of the Cauchy stress tensor in the
orthonormal basis fêigi=1;2;3. Note that Ω is the spicule’s cross-
section referred to in the deformed configuration. The vector ê3
is normal to Ω, and the vector ê1 points in the direction of the net
bending moment on Ω. The origin is chosen to be the centroid of
Ω and x1, x2 are the Cartesian coordinates in the ê1, ê2 directions,
respectively (Fig. 3A).
As mentioned in the Introduction, we assume that the onset of

spicule failure occurs when any of its cylinders fail or its core fails. A
cylinder or the core fails when the maximum principal stress at any
point within it exceeds the structure’s bulk tensile strength. Because
we treat each of the cylinders and the core as structural beams, the
maximum principal stress at every point within the spicule is σ33.
Furthermore, we assume that the bulk tensile strength of each of
the cylinders is the same. Because the cylinders’ thicknesses vary
from the core to the periphery, this last assumption of our failure
criterion contrasts with the observation that the strength of ceramic
structures typically depends on their size (26, 28).
However, we believe that this last assumption is justified for

the following reason. According to Ba�zant’s theory of stress re-
distribution and fracture energy release for scaling of structural
strength (29), the strength σst of a quasi-brittle structure scales
with its characteristic size D as

σst ∝
�
1+

D
D0

�−1=2

; [2]

where D0 is a critical length scale, characteristic of the structure’s
geometry and material. When D � D0, [2] asymptotes to the
scaling law σst ∝D−1=2 predicted by LEFM (26–28). And when
D � D0, the strength effectively becomes independent of D and
can be taken to be a constant. We show in SI Text, section S6 that
the silica cylinders lie in the regime where D<D0, and therefore
it is reasonable to assume that their strengths are the same.
Although the core’s strength is expected to be smaller than

that of the cylinders, our results change minimally regardless of
whether the core’s strength is different from or the same as that
of the cylinders. For the sake of simplicity, in the following
analysis we consider only the case in which the core’s strength is
the same as that of the cylinders. [We take the spicule’s core

radius aρ0 to be a constant in our analysis. Therefore, on taking
the strength of the core to be different from that of the cylinders,
only the expression for the load capacity given in [8] changes. The
important results, namely the optimal-strength radii sequence
given in [11]–[13] and the remarks in Discussion, Remarks on the
Optimal-Strength Radii Sequence, do not change. Consequently,
none of the conclusions drawn from the structural mechanics
model are affected as a result of this assumption.] In summary,
the failure criterion of our model stipulates that just before
failure

σ33 ≤ σst [3]

at all points on Ω, with the equality holding for at least one point.
The precise variation of σ33 over the spicule’s cross-section just

before failure will depend on the constitutive behavior of the
organic and silica phases, the mechanical behavior of the inter-
faces, and the forces acting on the spicule. Because we have
limited information on these specific quantities, as a first-order
approximation, we assume that σ33 on Ω just before failure can
be described by an affine function in each of the silica cylinders.
Specifically, numbering the silica cylinders starting with the spi-
cule’s core as j= 0; . . . ; n, we assume that just before failure σ33
on Ω in the jth silica cylinder has the form

σ33 =
�
x2
aϱj

+ «0

�
; [4]

where a denotes the spicule’s outer radius. We use [4] for mod-
eling σ33 because it is the simplest form that allows a tension and
a bending moment to be transmitted across Ω.
The symbols ϱj, j= 0; . . . ; n, and «0 denote positive, but other-

wise arbitrary parameters. Note that while determining ϱj and
«0 we allow σ33 to be discontinuous across adjacent silica cylin-
ders. This type of stress discontinuity generally implies a slip or
a tear in the material. However, in the spicules we believe that
the apparent stress discontinuity across silica cylinders is ac-
commodated by the large deformation of the relatively compli-
ant organic interlayers. Allowing σ33 to be discontinuous across
adjacent silica cylinders causes the load capacity to depend on

Fig. 2. Thicknesses vs. cylinder number data for five skeleton 1 spicules. The
solid lines shown are linear fits to the data.
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Fig. 3. Spicule model and results. (A) The spicule model coordinate system
and loading configuration. (B) σ33 on Ω when the model transmits a tension
equal to its peak load capacity L̂n

, for different n. The stress component σ33
is computed using [4] for the optimal values of ϱj and «0 given by [S17] and
[S18], for G= 1. (C) The optimal-strength radii sequence given by [11]–[13]
for n= 3. For comparison, two other radii sequences in which the cylinders’
areas and thickness are, respectively, constant are also shown. The core ra-
dius ρ0 is 0.4 in B and 0.2 in C.
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the radii of the silica cylinders and to be larger than that of a
homogeneous beam.
Using [4], the tension T and bending moment M =

R
Ωσ33x2 dΩ

on Ω are

T = πa2«0; [5]

M =
πa3

4

2
64ρ40
ϱ0

+

�
ρn1
�4 − ðρ0Þ4
ϱ1

+
Xn
j=2

�
ρnj
�4 − �

ρnj−1
�4

ϱj

3
75; [6]

where ρnj , j= 1; . . . ; n, is defined such that aρnj is the outer radius
of the jth silica cylinder and aρ0 is the radius of the spicule’s core.
We take ρ0 to be nonnegative and less than unity. For j= n, aρnn is
the spicule’s outer radius a, and therefore ρnn is always equal to
unity. We take the spicule’s core and outer radius to be fixed in
our analysis and refer to the outer radii of the internal silica
cylinders through the vector aρn = aðρn1 ; . . . ; ρnn−1Þ. For ρn to be
well defined it is necessary that n> 1.
It might appear from [5] that T depends only on our choice of

«0. In fact, T depends on all of the constants x= ðϱ0; . . . ; ϱn; «0Þ
and the radii sequence ρn, because M depends on ϱj and ρn, and

T =
M
Ga

; [7]

where G is a positive constant. Constraint [7] follows from the
fact that both T and M on Ω arise from the same set of forces at
the surface barbs. Further details on [7] are given in SI Text,
section S1.1. In line with our hypothesis that the spicule’s inter-
nal structure is an adaptation that enhances its anchoring ability,
we fix x and ρn to be equal to values at which the load capacity is
maximized. Because x and ρn are unrelated, we can derive their
optimal values independently. We determine the optimal values
of x by maximizing T subject to the constraints [3] and [7] (SI
Text, section S1.2). We denote the load capacity corresponding
to the optimal values of x as Ln, found by substituting the opti-
mal values of x in [5] and [6],

Ln½ρn�= πa2σst
4

4Mn½ρn�
4G+Mn½ρn�; [8]

where

Mn½ρn�= ρ30 +

�
ρn1
�4 − ðρ0Þ4
ρn1

+
Xn
j=2

�
ρnj
�4 − �

ρnj−1
�4

ρnj
: [9]

We then determine the optimal value of ρn by maximizing Ln

subject to the constraints that the core radius aρ0, outer radius a,
and the number of silica cylinders n are fixed and that ρn belongs
to the set

Bn =
n
ρn ∈Rn−1 : ρ0 ≤ ρn1 ;   ρ

n
j−1 ≤ ρnj ;   j= 2; . . . ;   n

o
; [10]

where Rn−1 is the n− 1-dimensional Euclidean space. For the
cylinder thicknesses to be positive, it is necessary that ρn belong
to Bn. In SI Text, section S2 we show that Ln achieves the global
maximum over the set Bn uniquely at ρn = ðρ̂n1 ; . . . ; ρ̂nn−1Þ, where

ρ̂nj =
Yn−1
k=j

αk; j= 1; . . . ; n− 1; [11]

and αk are terms of the sequence ðαkÞ∞k=0, where

α0 =
ρ0

α1α2⋯αn−1
; [12]

αk =
3
4
+
α4k−1
4

; [13]

for k> 0. We refer to ðρ̂n1 ; . . . ; ρ̂nn−1Þ= ρ̂n as the optimal-strength
radii sequence and the load capacity L½ρ̂n� corresponding to this
sequence as the peak load capacity L̂n

.

Discussion
Remarks on the Optimal-Strength Radii Sequence.

i) By comparing the peak load capacity L̂n
with load capacities

corresponding to three other radii sequences (Fig. 4), it can
be seen that L̂n

is always the largest. In addition, it should be
noted that the load capacities corresponding to the optimal-
strength radii sequence and the radii sequence in which the
cylinder cross-sectional areas are constant are almost indistin-
guishable. This is because the optimal-strength and the con-
stant-area radii sequences are very similar to each other. For
ρ0 and n close to the values measured in the four skeletons
(Table S1), the Euclidean distance (33) between the optimal-
strength and constant-area radii sequences is less than 4% of
the diameter of Bn. The closeness of the optimal-strength
and constant-area radii sequences can also be seen in Fig. 3C.

ii) The load capacity L̂n+1
> L̂n

for all n, that is, the peak load
capacity, always increases with the number of silica cylinders
(Fig. 4). We derive this result in SI Text, section S4.1. How-
ever, it is generally not true that Ln+1½ρn+1�>Ln½ρn� for ar-
bitrary types of radii sequences.

iii) We studied the aggregate load capacity for a set of spicules
having randomly chosen radii sequences and found that it
also increases with n. We also found that, at any given n, the

Fig. 4. Percentage increase in the load capacity Ln½ρn� (defined in [8]) as
a function of the total number of silica cylinders n plotted on a semilog scale. All
calculations are for G= 1. The black crosses correspond to ρn = ρ̂n, the optimal-
strength radii sequence, for ρ0 = 0:0,  0:4, and 0:5. The red circles correspond to
radii sequences in which the silica cylinders’ cross-sectional areas are constant
and the blue squares correspond to radii sequences in which the silica cylinders’
thicknesses are constant. For each n, the pink triangle denotes the aggregate
load capacity of a set of 104 randomly generated radii sequences; the SEs are
very small (<  3:2151× 10−4); therefore, we do not show them as error bars. In
the constant-area, constant-thickness, and aggregate load capacity plots
ρ0 = 0:0. Inset shows a close-up of the plots around the region n= 20.
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aggregate load capacity is smaller than the peak load capac-
ity. However, the difference becomes vanishingly small as
n becomes large. For example, setting ρ0 = 0 we found that
when n< 20, the aggregate load capacity is smaller than
L̂n

by about 20%. However, when n> 100, the difference
between the aggregate load capacity and L̂n

becomes less
than 1% (Fig. 4). These results show that the strategy of
increasing the load capacity by partitioning the load-bearing
material into several coaxial cylinders is quite robust.

iv) Numerically, for a wide range of n we found that L̂n
is

always greatest when ρ0 = 0. Similarly, for ρ0 = 0 we found
that L̂n

asymptotes to πa2σst=ð3G+ 1Þ as n becomes large
(Fig. 4). Setting n= 1 and ρ0 = 0 in [8] and [9] we found
that the load capacity of a homogeneous silica beam is
πa2σst=ð4G+ 1Þ. Based on these calculations, it can be shown
that the spicule’s internal structure can increase its load
capacity by a maximum of 25% over that of a homoge-
neous beam.

v) We found that the thicknesses corresponding to ρ̂n decrease
from the spicule’s core to its periphery. The proof of this
result is given in SI Text, section S4.2.

Comparison of Measured and Optimal Radii Sequences. In our model,
the thicknesses corresponding to ρ̂n decrease from the spicule’s
core to its periphery. Qualitatively, this finding is consistent with
our measurements of cylinder thicknesses in the native spicules
(Fig. 2 and Fig. S1). To quantify the closeness of the measured
radii sequences to the optimal-strength radii sequence we com-
pute the metric

d=

�
ðr0 − aρ0Þ2 +

Pp
j=1

�
rj − aρ̂nj

�2
	1=2

*�Pp
j=0

�
rj − χ j

�2
	1=2+ [14]

for each of the spicules. In [14], the term r0 is the measured
radius of the spicule’s core and r1; . . . ; rp are the measured radii
of the first p consecutive silica cylinders. Given aρ0 and α0,
aρ̂nj ;   j= 1 . . . p, can be computed using [11] and [13]. Thus, there
are two free parameters aρ0 and α0 in [14], which we choose to
make d as small as possible. The denominator of [14] is the
average of the Euclidean distance between the measured radii
sequence rj and a monotonically increasing sequence χj of p
numbers lying between r0 and rp, computed for 104 randomly
generated χ j. Thus, if d< 1, the test sequence ρ̂nj fits the mea-
sured sequence better than a randomly chosen sequence of radii.
For reference, we also computed d with ρ̂n replaced by radii
sequences for which the cylinders’ cross-sectional areas and
thicknesses are, respectively, constant. We chose aρ0 and the
area (respectively thickness) of the cylinders in the constant-area
(respectively constant-thickness) sequence to make d as small as
possible. The means and SEs of d for the optimal-strength, con-
stant-area, and constant-thickness sequences are shown in
Table 1 for the four skeletons examined. The fitted radii se-
quences corresponding to a representative measured sequence
from skeleton 1 are shown in Fig. 5.

We find that the mean values of d for the constant-area and
optimal-strength radii sequences are smaller than for the constant-
thickness radii sequence in each of the skeletons. Although the
mean value of d for the optimal-strength radii sequence is slightly
smaller than that for the constant-area radii sequence in skeletons
1, 2, and 4, these differences are not statistically significant.
Therefore, we conclude that the optimal-strength and the constant-
area radii sequences correlate equally well with the measured radii
sequences and better than the constant-thickness radii sequence.
An alternate mechanics model based on the idea of controlling

flaws has been put forward to explain the trend of decreasing thick-
nesses in the spicule’s internal structure (32). In this alternate model
σ33 is assumed to vary affinely over Ω and the load capacity is max-
imized by varying the cylinder thicknesses subject to the constraint
that each cylinder’s strength be greater than the maximum value of
σ33 over its cross-section. This idea along with the scaling of strength
predicted by LEFM implies that the sequence of radii should vary as

ρnj−1 = ρnj −
ð1+ 1=4GÞ2τnn�
ρnj + 1

.
4G

�2; [15]

where τnn is the dimensionless thickness 1− ρnn−1 of the outermost
cylinder. Eq. 15 is derived in SI Text, section S5. We compute d by
replacing ρ̂nj with the controlling-flaw radii sequence given in [15]
and choosing aρnp and G so that it is as small as possible. The
computed values of d for various discrete τnn are shown in Table
S2. The results corresponding to the τnn that produced the smallest
d value are also shown in Table 1. As can be noted from Table 1
and Fig. 5, the measured radii sequences compare much better to
our optimal-strength radii sequence than to the controlling-flaw
radii sequence. In fact, the controlling-flaw radii sequence does
not even fit as well as the constant-thickness sequence.
These results demonstrate that the spicule’s internal structure

is consistent with our model, supporting our hypothesis that the
internal structure is an adaptation aimed at increasing the spi-
cule’s load capacity.
It is important to note that, although our results are very en-

couraging, they are far from a confirmation that mechanical opti-
mization is the only factor contributing to the spicule’s design.
Some architectural features of biological structures are merely
a consequence of the growth processes through which the

Table 1. Metric d ×100, mean ± SE

Skeleton 1 2 3 4

Optimal strength 19.3 ± 1.5 17.7 ± 1.7 21.6 ± 1.5 23.3 ± 2.0
Constant area 22.8 ± 2.7 20.2 ± 2.4 18.3 ± 2.2 28.4 ± 3.0
Constant thickness 29.0 ± 1.5 26.2 ± 1.4 30.7 ± 1.4 30.4 ± 1.4
Controlling flaw,

aτnn =0:30 μm
74.3 ± 7.1 73.0 ± 6.2 59.2 ± 4.9 144.1 ± 34.3

Fig. 5. Variation of the dimensionless thickness with the dimensionless
outer radius of the silica cylinders on a log–log scale. The best-fit radii
sequences from models discussed in Discussion, Comparison of Measured
and Optimal Radii Sequences are shown along with the corresponding
measured radii sequence from a representative spicule from skeleton 1.
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structures are formed and have no obvious functional implications,
e.g., growth rings in fish scales (34). Despite previous efforts (35),
knowledge regarding the detailed mechanisms underlying hex-
actinellid spicule formation is still incomplete and therefore, at this
stage, it cannot be ruled out whether other factors, such as growth
processes, are also responsible for the spicule’s decreasing thick-
ness lamellar structure. Even more importantly, many biological
skeletal elements are inherently multifunctional and have evolved
the ability to perform a variety of tasks in addition to their me-
chanical ones. In particular, it has been shown that sponge spicules
have exceptional fiberoptical properties (21, 23, 36). Currently, we
cannot be certain that the spicule’s internal architecture contrib-
utes solely to its mechanical function or whether it has additional
(e.g., light transmission) benefits. However, whether the spicule’s
architecture is a simple outcome of its growth process or is spe-
cifically optimized for multifunctionality, it clearly offers the
sponge skeleton an exceptional mechanical advantage.
Similarly, it is also possible that the spicule’s internal archi-

tecture is connected to a different metric of the spicule’s me-
chanical efficiency, such as the failure curvature—the largest
curvature the spicule can withstand without failing.

Concluding Remarks
To thoroughly test our hypothesis, it is necessary to confirm some
of our model’s key assumptions, such as (i) that the spicule fails
according to the failure criterion outlined in Results, Spicule’s Load
Capacity and (ii) just before failure, σ33 on Ω varies in an optimal
fashion so that the spicule’s load capacity is as large as possible.
Although the information required to validate these key as-

sumptions is currently unavailable, additional measurements of
the elastic properties and failure behavior of the spicules at
different length scales will aid in the further refinement of our
structural model.
As a consequence of the key assumption ii, our model predicts

that the peak values of σ33 in each of the silica cylinders will all
be equal to the failure stress σst at the onset of failure (Fig. 3B).

This prediction can be interpreted to mean that the cylinders will
all fail at once. Considering that our model is an idealization and
that it is not constructed with the goal of capturing the failure
process, we do not expect this interpretation to be accurate. We
believe that the silica cylinders will fail progressively, as was
observed in spicules from related species (25, 32, 37).
In traditional engineering design, the specific strength of load-

bearing structural elements is increased by varying their external
geometry. For example, for small deformation of a homogeneous
beam, σ33 on Ω varies as σ33 =Mx2=I when Ω is symmetric about
the ê1 direction (30). Here I is the second moment of inertia of Ω
about the ê1 direction. As a result, a beam’s specific strength can
be maximized by varying the shape of Ω to make the beam’s
dimension in the ê2 direction and the area of Ω as small as
possible, while making the beam’s inertia I as large as possible.
In contrast, the spicules discussed here can be seen as an in-
spiration for new design strategies in which a structure’s specific
strength can be increased by varying its internal elastic compo-
sition. For example, one could envision composite beams whose
internal elastic heterogeneity results in a stress distribution that
becomes increasingly uniform as the beam deforms.

Materials and Methods
Anchor spicules from four individual E. aspergillum skeletons were embed-
ded in Spurr’s resin, cross-sectioned, and imaged with a Tescan Vega scan-
ning electron microscope (Fig. 1D). From the resulting images, we measured
the sequence of silica cylinder radii by fitting circles to the cylinder bound-
aries starting with the spicule’s core (Fig. S2). We also measured the number
of silica cylinders and the outer radius for each of the 116 spicules examined
(Table S1). For details see SI Text, section S7.
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