Kolle, Stefan

2020
Paink GK, Kolle S, Le D, Weaver JC, Alvarenga J, Ahanotu O, Aizenberg J, Kim P. Dynamic Self-Repairing Hybrid Liquid-in-Solid Protective Barrier for Cementitious Materials. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 2020;12 (28) :31922 - 31932. Publisher's VersionAbstract
Corrosion and surface fouling of structural materials, such as concrete, are persistent problems accelerating undesirable material degradation for many industries and infrastructures. To counteract these detrimental effects, protective coatings are frequently applied, but these solid-based coatings can degrade or become mechanically damaged over time. Such irreversible and irreparable damage on solid-based protective coatings expose underlying surfaces and bulk materials to adverse environmental stresses leading to subsequent fouling and degradation. We introduce a new concept of a hybrid liquid-in-solid protective barrier (LIB) to overcome the limitations of traditional protective coatings with broad applicability to structural materials. Through optimization of capillary forces and reduction of the interfacial energy between an upper mobile liquid and a lower immobile solid phase, a stable liquid-based protective layer is created. This provides a persistent self-repairing barrier against the infiltration of moisture and salt, in addition to omniphobic surface properties. As a model experimental test bed, we applied this concept to cementitious materials, which are commonly used as binders in concrete, and investigated how the mobile liquid phase embedded within a porous solid support contributes to the material’s barrier protection and antifouling properties. Using industry standard test methods for acid resistance, chloride-ion penetrability, freeze–thaw cyclability, and mechanical durability, we demonstrate that LIBs exhibit significantly reduced water absorption and ion penetrability, improved repellency against various nonaqueous liquids, and resistance to corrosion while maintaining their required mechanical performance as structural materials.Corrosion and surface fouling of structural materials, such as concrete, are persistent problems accelerating undesirable material degradation for many industries and infrastructures. To counteract these detrimental effects, protective coatings are frequently applied, but these solid-based coatings can degrade or become mechanically damaged over time. Such irreversible and irreparable damage on solid-based protective coatings expose underlying surfaces and bulk materials to adverse environmental stresses leading to subsequent fouling and degradation. We introduce a new concept of a hybrid liquid-in-solid protective barrier (LIB) to overcome the limitations of traditional protective coatings with broad applicability to structural materials. Through optimization of capillary forces and reduction of the interfacial energy between an upper mobile liquid and a lower immobile solid phase, a stable liquid-based protective layer is created. This provides a persistent self-repairing barrier against the infiltration of moisture and salt, in addition to omniphobic surface properties. As a model experimental test bed, we applied this concept to cementitious materials, which are commonly used as binders in concrete, and investigated how the mobile liquid phase embedded within a porous solid support contributes to the material’s barrier protection and antifouling properties. Using industry standard test methods for acid resistance, chloride-ion penetrability, freeze–thaw cyclability, and mechanical durability, we demonstrate that LIBs exhibit significantly reduced water absorption and ion penetrability, improved repellency against various nonaqueous liquids, and resistance to corrosion while maintaining their required mechanical performance as structural materials.
acsami.0c06357_final.pdf
2017
Amini S, Kolle S, Petrone L, Ahanotu O, Sunny S, Sutanto CN, Hoon S, Cohen L, Weaver JC, Aizenberg J, et al. Preventing mussel adhesion using lubricant-infused materials. Science. 2017;357 (6352) :668-673. Publisher's VersionAbstract

Mussels are opportunistic macrofouling organisms that can attach to most immersed solid surfaces, leading to serious economic and ecological consequences for the maritime and aquaculture industries. We demonstrate that lubricant-infused coatings exhibit very low preferential mussel attachment and ultralow adhesive strengths under both controlled laboratory conditions and in marine field studies. Detailed investigations across multiple length scales—from the molecular-scale characterization of deposited adhesive proteins to nanoscale contact mechanics to macroscale live observations—suggest that lubricant infusion considerably reduces fouling by deceiving the mechanosensing ability of mussels, deterring secretion of adhesive threads, and decreasing the molecular work of adhesion. Our study demonstrates that lubricant infusion represents an effective strategy to mitigate marine biofouling and provides insights into the physical mechanisms underlying adhesion prevention.

2015
Li L, Kolle S, Weaver JC, Ortiz C, Aizenberg J, Kolle M. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet. Nat. Commun. 2015;6 :6322. Full TextAbstract
Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.
Tesler AB, Kim P, Kolle S, Howell C, Ahanotu O, Aizenberg J. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nat. Commun. 2015;6 :8649. Full TextAbstract
Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.
2014
Howell C, Vu TL, Lin JJ, Kolle S, Juthani N, Watson E, Weaver JC, Alvarenga J, Aizenberg J. Self-Replenishing Vascularized Fouling-Release Surfaces. ACS Appl. Mater. Interfaces. 2014;6 (15) :13299-13307. Full TextAbstract

Inspired by the long-term effectiveness of living
antifouling materials, we have developed a method for the self-
replenishment of synthetic biofouling-release surfaces. These
surfaces are created by either molding or directly embedding
3D vascular systems into polydimethylsiloxane (PDMS) and
filling them with a silicone oil to generate a nontoxic oil-
infused material. When replenished with silicone oil from an
outside source, these materials are capable of self-lubrication
and continuous renewal of the interfacial fouling-release layer.
Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella salina, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.