Wettability

The need to fend off water is as fundamental as the need to acquire it: water absorption by buildings fosters mold growth and structural breakdown, stagnant surface water breeds disease, and waterlogged clothing interferes with body temperature regulation. 

We traditionally rely on chemical coatings to prevent water absorption and retention, but these wear off over time and can be toxic. In contrast, many organisms use built-in topography: water striders keep their legs dry, mosquitoes defog their eyes, and leaves shed raindrops by limiting water contact to the tips of nanoscale bristles on their surfaces. Air fills the rest of the space under the drop, such that the bristles create a patterned air-solid surface on which macroscopic droplets slide and molecules within each droplet diffuse largely as if the drop were in air. 

We are investigating how patterned features govern motion at these unique interfaces, and have recently optimized liquid-surface dynamics to design ice-preventive materials that deflect impacting droplets at sub-freezing temperatures and nucleate only unstable, low-adhesion ice below that. Since topographic patterns disappear if the bristles lie down, water resistance can be turned on and off simply by bending or tilting, and we use this unique feature to design materials that reversibly switch between hydrophobic and hydrophilic behavior in response to environmental conditions. While liquids other than water are more difficult to resist due to their stronger tendency to spread on a surface, we have recently made the surprising discovery that biofilm – a bacterial commune encased in slime – has a unique multiscale topography that fends off not only water but an unprecedented assortment of other liquids, and we are designing previously elusive resilient, highly nonwetting materials based on our intriguing new role model.

Singleton TA, Burgess IB, Nerger BA, Goulet-Hanssens A, Koay N, Barrett CJ, Aizenberg J. Photo-tuning of Highly Selective Wetting in Inverse Opals. Soft Matter. 2014;10 (9) :1325-1328. Publisher's VersionAbstract

Crack-free inverse opals exhibit a sharply defined threshold wettability for infiltration that has enabled their use as colourimetric indicators for liquid identification. Here we demonstrate direct and continuous photo-tuning of this wetting threshold in inverse opals whose surfaces are function- alized with a polymer doped with azobenzene chromophores.

Burgess IB, Abedzadeh N, Kay TM, Shneidman AV, Cranshaw DJ, Loncar M, Aizenberg J. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography. Scientific Reports. 2016;6 (1) :19542. Full TextAbstract
Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids.
Vogel N, Belisle RA, Hatton B, Wong TS, Aizenberg J. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nature Communications. 2013;4. Publisher's VersionAbstract
A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show how this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.
Phillips KR, England GT, Sunny S, Shirman E, Shirman T, Vogel N, Aizenberg J. A colloidoscope of colloid-based porous materials and their uses. Chem. Soc. Rev. 2016;45 (2) :281-322. Full TextAbstract
Nature evolved a variety of hierarchical structures that produce sophisticated functions. Inspired by these natural materials, colloidal self-assembly provides a convenient way to produce structures from simple building blocks with a variety of complex functions beyond those found in nature. In particular, colloid-based porous materials (CBPM) can be made from a wide variety of materials. The internal structure of CBPM also has several key attributes, namely porosity on a sub-micrometer length scale, interconnectivity of these pores, and a controllable degree of order. The combination of structure and composition allow CBPM to attain properties important for modern applications such as photonic inks, colorimetric sensors, self-cleaning surfaces, water purification systems, or batteries. This review summarizes recent developments in the field of CBPM, including principles for their design, fabrication, and applications, with a particular focus on structural features and materials' properties that enable these applications. We begin with a short introduction to the wide variety of patterns that can be generated by colloidal self-assembly and templating processes. We then discuss different applications of such structures, focusing on optics, wetting, sensing, catalysis, and electrodes. Different fields of applications require different properties, yet the modularity of the assembly process of CBPM provides a high degree of tunability and tailorability in composition and structure. We examine the significance of properties such as structure, composition, and degree of order on the materials' functions and use, as well as trends in and future directions for the development of CBPM.
Burgess IB, Loncar M, and Aizenberg J. Structural Colour in Colourimetric Sensors and Indicators. J. Mater. Chem. C. 2013;1 (38) :6075-6086. Publisher's VersionAbstract
Colourimetric sensors and indicators are widely used because of their low cost and simplicity. A significant challenge associated with the design of this type of device is that the sensing mechanism must be simultaneously optimised for the sensitivity of the response and a visually perceptible colour change. Structural colour, derived from coherent scattering rather than molecular absorption, is a promising route to colourimetric sensor design because colour shifts are tied to changes in one of many physical properties of a material, rather than a specific chemical process. This Feature Article presents an overview of the development of low-cost sensors and indicators that exploit structural colour. Building upon recent advances in structurally adaptive materials design, structural colour sensors have been developed for a wide variety of previously inaccessible physical (e.g. temperature, strain, electric fields) and chemical stimuli (e.g. small organic molecules, charged species, biomacromolecules and metabolites). These devices, often exceeding the state of the art in performance, simplicity or both, have bright prospects for market impact in areas such as environmental monitoring, workplace hazard identification, threat detection, and point-of-care diagnostics. Finding the ideal balance between performance (e.g. sensitivity, specificity, reproducibility, etc.) and simplicity (e.g. colourimetric vs. spectroscopic readout) will be one of the most critical elements in the further development of structural colour sensors. This balance should be driven largely by the market demands and competing technologies.
Hou X, Hu Y, Grinthal A, Khan M, Aizenberg J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature. 2015;519 (7541) :70-73. Full TextAbstract
Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems. But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable. Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air–water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.
Mishchenko L, Aizenberg J, Hatton BD. Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches. Adv. Funct. Mater. 2013;23 (36) :4577-4584. Publisher's VersionAbstract
Certain natural organisms use micro‐patterned surface chemistry, or ice‐nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom‐up deposition process is used to take advantage of the limited contact area of a non‐wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescence of micrometer‐scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice‐nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer‐scale condensation and freezing phenomena, and as a model for natural systems.