Joanna Aizenberg

Joanna Aizenberg

Joanna Aizenberg pursues a broad range of research interests that include biomineralization, biomimetics, self-assembly, crystal engineering, surface chemistry, nanofabrication, biomaterials, biomechanics and biooptics.

She received the B.S. degree in Chemistry in 1981, the M.S. degree in Physical Chemistry in 1984 from Moscow State University, and the Ph.D. degree in Structural Biology from the Weizmann Institute of Science in 1996. She then went to Harvard University where she did postdoctoral research with George Whitesides on micro/nanofabrication and near-field optics.

Read more

In 1998 Aizenberg joined Bell Labs as a member of the Technical Staff where she has made several pioneering contributions including developing new biomimetic approaches for the synthesis of ordered mineral films with highly controlled shapes and orientations, and discovering unique optical systems formed by organisms (microlenses and optical fibers) that outshine technological analogs, and characterized the associated organic molecules. In 2007 Aizenberg joined the Harvard School of Engineering and Applied Sciences.

Professor Aizenberg's research is aimed at understanding some of the basic principles of biomineralization and the economy with which biology solves complex problems in the design of functional inorganic materials. She then uses biological principles as guidance in developing new, bio-inspired synthetic routes and nanofabrication strategies that would lead to advanced materials and devices. Aizenberg is one of the pioneers of this rapidly developing field of biomimetic inorganic materials synthesis.

"In the course of evolution, Nature has developed strategies that endow biological processes with exquisite selectivity and specificity, and produce superior materials and structures," says Aizenberg. "This is wonderfully exemplified in the realm of inorganic materials formation by organisms, so-called 'biomineralization'. Learning from and mastering Nature's concepts not only satisfies humankind's insatiable curiosity for understanding the world around us, but also promises to drive a paradigm shift in modern materials science and technology."

Friedlander RS, Vogel N, Aizenberg J. Role of Flagella in Adhesion of Escherichia coli to Abiotic Surfaces. Langmuir. 2015;31 (22) :6137-6144. Full TextAbstract

Understanding the interfacial activity of bacteria is of critical importance due to the huge economic and public health implications associated with surface fouling and biofilm formation. The complexity of the process and difficulties of predicting microbial adhesion to novel materials demand study of the properties of specific bacterial surface features and their potential contribution to surface attachment. Here, we examine flagella, cell appendages primarily studied for their cell motility function, to elucidate their potential role in the surface adhesion of Escherichia coli - a model organism and potential pathogen. We use self-assembled monolayers (SAMs) of thiol-bearing molecules on gold films to generate surfaces of varying hydrophobicity, and measure adhesion of purified flagella using quartz crystal microbalance. We show that flagella adhere more extensively and bind more tightly to hydrophobic SAMs than to hydrophilic ones, and we propose a two-step vs a single-step adhesion mechanism that accounts for the observed dissipation and frequency changes for the two types of surfaces, respectively. Subsequently, study of the adhesion of wild-type and flagella knockout cells confirms that flagella improve adhesion to hydrophobic substrates, whereas cells lacking flagella do not show preferred affinity to hydrophobic substrates. Together, these properties bring about an interesting ability of cells with flagella to stabilize emulsions of aqueous culture and dodecane, not observed for cells lacking flagella. This work contributes to our overall understanding of nonspecific bacterial adhesion and confirms that flagella, beyond motility, may play an important role in surface adhesion.

Liu Y, Yong X, McFarlin IV G, Kuksenok O, Aizenberg J, Balazs AC. Designing a gel–fiber composite to extract nanoparticles from solution. Soft Matter. 2015;11 (44) :8692-8700.Abstract

The extraction of nanoscopic particulates from flowing fluids is a vital step in filtration processes, as well as the fabrication of nanocomposites. Inspired by the ability of carnivorous plants to use hair-like filaments to entrap species, we use computational modeling to design a multi-component system that integrates compliant fibers and thermo-responsive gels to extract particles from the surrounding solution. In particular, hydrophobic fibers are embedded in a gel that exhibits a lower critical solution temperature (LCST). With an increase in temperature, the gel collapses to expose fibers that self assemble into bundles, which act as nanoscale ‘‘grippers’’ that bind the particles and draw them into the underlying gel. By varying the relative stiffness of the fibers, the fiber–particle interaction strength and the shear rate in the solution, we identify optimal parameters where the particles are effectively drawn from the solution and remain firmly bound within the gel layer. Hence, the system can be harnessed in purifying fluids and creating novel hybrid materials that integrate nanoparticles with polymer gels.

Wei Z, Schneider TM, Kim J, Kim H-J, Aizenberg J, Mahadevan L. Elastocapillary coalescence of plates and pillars. Proc. R. Soc. A. 2015;471 (2175) :20140593.Abstract

When a fluid-immersed array of supported plates or pillars is dried, evaporation leads to the formation of menisci on the tips of the plates or pillars that bring them together to form complex patterns. Building on prior experimental observations, we use a combination of theory and computation to understand the nature of this instability and its evolution in both the two- and three-dimensional setting of the problem. For the case of plates, we explicitly derive the interaction torques based on the relevant physical parameters associated with pillar deformation, contact-line pinning/depinning and fluid volume changes. A Bloch-wave analysis for our periodic mechanical system captures the window of volumes where the two-plate eigenvalue characterizes the onset of the coalescence instability. We then study the evolution of these binary clusters and their eventual elastic arrest using numerical simulations that account for evaporative dynamics coupled to capillary coalescence. This explains both the formation of hierarchical clusters and the sensitive dependence of the final structures on initial perturbations, as seen in our experiments. We then generalize our analysis to treat the problem of pillar collapse in three dimensions, where the fluid domain is completely connected and the interface is a minimal surface with the uniform mean curvature. Our theory and simulations capture the salient features of experimental observations in a range of different situations and may thus be useful in controlling the ensuing patterns.

Howell C, Vu TL, Johnson CP, Hou X, Ahanotu O, Alvarenga J, Leslie DC, Uzun O, Waterhouse A, Kim P, et al. Stability of Surface-Immobilized Lubricant Interfaces under Flow. Chem. Mater. 2015;27 (5) :1792-1800. Full TextAbstract
The stability and longevity of surface-stabilized lubricant layers is a critical question in their application as low- and nonfouling slippery surface treatments in both industry and medicine. Here, we investigate lubricant loss from surfaces under flow in water using both quantitative analysis and visualization, testing the effects of underlying surface type (nanostructured versus flat), as well as flow rate in the physiologically relevant range, lubricant type, and time. We find lubricant losses on the order of only ng/cm2 in a closed system, indicating that these interfaces are relatively stable under the flow conditions tested. No notable differences emerged between surface type, flow rate, lubricant type, or time. However, exposure of the lubricant layers to an air/water interface did significantly increase the amount of lubricant removed from the surface, leading to disruption of the layer. These results may help in the development and design of materials using surface-immobilized lubricant interfaces for repellency under flow conditions.
Li L, Connors MJ, Kolle M, England GT, Speiser DI, Xiao X, Aizenberg J, Ortiz C. Multifunctionality of chiton biomineralized armor with an integrated visual system. Science. 2015;350 (6263) :952-956. Full TextAbstract
Nature provides a multitude of examples of multifunctional structural materials in which trade-offs are imposed by conflicting functional requirements. One such example is the biomineralized armor of the chiton Acanthopleura granulata, which incorporates an integrated sensory system that includes hundreds of eyes with aragonite-based lenses. We use optical experiments to demonstrate that these microscopic lenses are able to form images. Light scattering by the polycrystalline lenses is minimized by the use of relatively large, crystallographically aligned grains. Multiscale mechanical testing reveals that as the size, complexity, and functionality of the integrated sensory elements increase, the local mechanical performance of the armor decreases. However, A. granulata has evolved several strategies to compensate for its mechanical vulnerabilities to form a multipurpose system with co-optimized optical and structural functions.
Hou X, Hu Y, Grinthal A, Khan M, Aizenberg J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature. 2015;519 (7541) :70-73. Full TextAbstract
Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems. But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable. Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air–water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.
Li L, Kolle S, Weaver JC, Ortiz C, Aizenberg J, Kolle M. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet. Nat. Commun. 2015;6 :6322. Full TextAbstract
Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.
MacCallum N, Howell C, Kim P, Sun D, Friedlander R, Ranisau J, Ahanotu O, Lin JJ, Vena A, Hatton B, et al. Liquid-Infused Silicone As a Biofouling-Free Medical Material. ACS Biomater. Sci. Eng. 2015;1 (1) :43-51.Abstract
There is a dire need for infection prevention strategies that do not require the use of antibiotics, which exacerbate the rise of multi- and pan-drug resistant infectious organisms. An important target in this area is the bacterial attachment and subsequent biofilm formation on medical devices (e.g., catheters). Here we describe nonfouling, lubricant-infused slippery polymers as proof-of-concept medical materials that are based on oil-infused polydimethylsiloxane (iPDMS). Planar and tubular geometry silicone substrates can be infused with nontoxic silicone oil to create a stable, extremely slippery interface that exhibits exceptionally low bacterial adhesion and prevents biofilm formation. Analysis of a flow culture of Pseudomonas aeruginosa through untreated PDMS and iPDMS tubing shows at least an order of magnitude reduction of biofilm formation on iPDMS, and almost complete absence of biofilm on iPDMS after a gentle water rinse. The iPDMS materials can be applied as a coating on other polymers or prepared by simply immersing silicone tubing in silicone oil, and are compatible with traditional sterilization methods. As a demonstration, we show the preparation of silicone-coated polyurethane catheters and significant reduction of Escherichia coli and Staphylococcus epidermidis biofilm formation on the catheter surface. This work represents an important first step toward a simple and effective means of preventing bacterial adhesion on a wide range of materials used for medical devices.
Kaplan CN, Wu N, Mandre S, Aizenberg J, Mahadevan L. Dynamics of evaporative colloidal patterning. Physics of Fluids. 2015;27 (9) :092105. Full TextAbstract

Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporationrate.

Cui J, Daniel D, Grinthal A, Lin K, Aizenberg J. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing. Nat. Mater. 2015;14 (8) :790-795. Publisher's VersionAbstract
Approaches for regulated fluid secretion, which typically rely on fluid encapsulation and release from a shelled compartment, do not usually allow a fine continuous modulation of secretion, and can be difficult to adapt for monitoring or function-integration purposes. Here, we report self-regulated, self-reporting secretion systems consisting of liquid-storage compartments in a supramolecular polymer-gel matrix with a thin liquid layer on top, and demonstrate that dynamic liquid exchange between the compartments, matrix and surface layer allows repeated, responsive self-lubrication of the surface and cooperative healing of the matrix. Depletion of the surface liquid or local material damage induces secretion of the stored liquid via a dynamic feedback between polymer crosslinking, droplet shrinkage and liquid transport that can be read out through changes in the system’s optical transparency. We foresee diverse applications in fluid delivery, wetting and adhesion control, and material self-repair.
Schaffner M, England G, Kolle M, Aizenberg J, Vogel N. Combining Bottom-Up Self-Assembly with Top-Down Microfabrication to Create Hierarchical Inverse Opals with High Structural Order. Small. 2015;11 (34) :4334-4340. Full TextAbstract
Colloidal particles can assemble into ordered crystals, creating periodically structured materials at the nanoscale without relying on expensive equipment. The combination of small size and high order leads to strong interaction with visible light, which induces macroscopic, iridescent structural coloration. To increase the complexity and functionality, it is important to control the organization of such materials in hierarchical structures with high degrees of order spanning multiple length scales. Here, a bottom-up assembly of polystyrene particles in the presence of a silica sol–gel precursor material (tetraethylorthosilicate, TEOS), which creates crack-free inverse opal films with high positional order and uniform crystal alignment along the (110) crystal plane, is combined with top-down microfabrication techniques. Micrometer scale hierarchical superstructures having a highly regular internal nanostructure with precisely controlled crystal orientation and wall profiles are produced. The ability to combine structural order at the nano- and microscale enables the fabrication of materials with complex optical properties resulting from light–matter interactions at different length scales. As an example, a hierarchical diffraction grating, which combines Bragg reflection arising from the nanoscale periodicity of the inverse opal crystal with grating diffraction resulting from a micrometer scale periodicity, is demonstrated.
Monn MA, Weaver JC, Zhang T, Aizenberg J, Kesari H. New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum. Proc. Nat. Acad. Sci. 2015;112 (16) :4976-4981. Publisher's VersionAbstract
To adapt to a wide range of physically demanding environmental conditions, biological systems have evolved a diverse variety of robust skeletal architectures. One such example, Euplectella aspergillum, is a sediment-dwelling marine sponge that is anchored into the sea floor by a flexible holdfast apparatus consisting of thousands of anchor spicules (long, hair-like glassy fibers). Each spicule is covered with recurved barbs and has an internal architecture consisting of a solid core of silica surrounded by an assembly of coaxial silica cylinders, each of which is separated by a thin organic layer. The thickness of each silica cylinder progressively decreases from the spicule’s core to its periphery, which we hypothesize is an adaptation for redistributing internal stresses, thus increasing the overall strength of each spicule. To evaluate this hypothesis, we created a spicule structural mechanics model, in which we fixed the radii of the silica cylinders such that the force transmitted from the surface barbs to the remainder of the skeletal system was maximized. Compared with measurements of these parameters in the native sponge spicules, our modeling results correlate remarkably well, highlighting the beneficial nature of this elastically heterogeneous lamellar design strategy. The structural principles obtained from this study thus provide potential design insights for the fabrication of high-strength beams for load-bearing applications through the modification of their internal architecture, rather than their external geometry.
Shastri A, McGregor LM, Liu Y, Harris V, Nan H, Mujica M, Vasquez Y, Bhattacharya A, Ma Y, Aizenberg M, et al. An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system. Nat. Chem. 2015;7 (5) :447-454. Full TextAbstract
The efficient extraction of (bio)molecules from fluid mixtures is vital for applications ranging from target characterization in (bio)chemistry to environmental analysis and biomedical diagnostics. Inspired by biological processes that seamlessly synchronize the capture, transport and release of biomolecules, we designed a robust chemomechanical sorting system capable of the concerted catch and release of target biomolecules from a solution mixture. The hybrid system is composed of target-specific, reversible binding sites attached to microscopic fins embedded in a responsive hydrogel that moves the cargo between two chemically distinct environments. To demonstrate the utility of the system, we focus on the effective separation of ​thrombin by synchronizing the pH-dependent binding strength of a ​thrombin-specific aptamer with volume changes of the pH-responsive hydrogel in a biphasic microfluidic regime, and show a non-destructive separation that has a quantitative sorting efficiency, as well as the system's stability and amenability to multiple solution recycling.
Tesler AB, Kim P, Kolle S, Howell C, Ahanotu O, Aizenberg J. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nat. Commun. 2015;6 :8649. Full TextAbstract
Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.
Aizenberg J. Slippery Liquid-Infused Porous Surfaces. The Journal of Ocean Technology. 2014;9 (4) :113-114.Abstract

Marine biofouling, the process of accumulation of microorganisms, plants, algae and animals on submerged surfaces, is an age-old problem associated with any maritime activity affecting commercial and recreational shipping activities, naval operations, aquaculture facilities and marine renewable energy structures alike. The adverse effects of marine biofouling include the increase of drag on ship hulls, damage to ships and maritime equipment such as corrosion, the spread of diseases in aquaculture and the distribution of invasive species causing extensive damage to coastal ecosystems and the benefits derived from them. An estimated global annual total of $60 billion in fuel cost alone can be saved by the application of marine antifouling coatings, making the treatment of marine biofouling a necessity not an option.

Zarzar LD, Aizenberg J. Stimuli-Responsive Chemomechanical Actuation: A Hybrid Materials Approach. Acc. Chem. Res. 2014;47 (2) :530-539. Full TextAbstract

Dynamic materials that can sense changes in their surroundings and functionally respond by altering many of their physical characteristics are primed to be integral components of future “smart” technologies. A fundamental reason for the adaptability of biological organisms is their innate ability to convert environmental or chemical cues into mechanical motion and reconfiguration on both the molecular and macroscale. However, design and engineering of robust chemomechanical behavior in artificial materials has proven a challenge. Such systems can be quite complex and often require intricate coordination between both chemical and mechanical inputs and outputs, as well as the combination of multiple materials working cooperatively to achieve the proper functionality. It is critical to not only understand the fundamental behaviors of existing dynamic chemo- mechanical systems but also apply that knowledge and explore new avenues for design of novel materials platforms that could provide a basis for future adaptive technologies.
In this Account, we explore the chemomechanical behavior, properties, and applications of hybrid-material surfaces consisting of environmentally sensitive hydrogels integrated within arrays of high-aspect-ratio nano- or microstructures. This bio-inspired approach, in which the volume-changing hydrogel acts as the “muscle” that reversibly actuates the microstructured “bones”, is highly tunable and customizable. Although straightforward in concept, the combination of just these two materials (structures and hydrogel) has given rise to a far more complex set of actuation mechanisms and behaviors. Variations in how the hydrogel is physically integrated within the structure array provide the basis for three fundamental mechanisms of actuation, each with its own set of responsive properties and chemomechanical behavior. Further control over how the chemical stimulus is applied to the surface, such as with microfluidics, allows for generation of more precise and varied patterns of actuation. We also discuss the possible applications of these hybrid surfaces for chemomechanical manipulation of reactions, including the generation of chemomechanical feedback loops. Comparing and contrasting these many approaches and techniques, we aim to put into perspective their highly tunable and diverse capabilities but also their future challenges and impacts.

Phillips KR, Vogel N, Burgess IB, Perry CC, Aizenberg J. Directional Wetting in Anisotropic Inverse Opals. Langmuir. 2014;30 (25) :7615-7620. Publisher's VersionAbstract

Porous materials display interesting transport phenomena due to restricted motion of fluids within the nano- to microscale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy.

Mayzel B, Aizenberg J, Ilan M. The Elemental Composition of Demospongiae from the Red Sea, Gulf of Aqaba. PLoS ONE. 2014;9 (4) :e95775. Full TextAbstract

Trace elements are vital for the growth and development of all organisms. Little is known about the elemental content and trace metal biology of Red Sea demosponges. This study establishes an initial database of sponge elemental content. It provides the necessary foundation for further research of the mechanisms used by sponges to regulate the uptake, accumulation, and storage of metals. The metal content of 16 common sponge species was determined using ICP measurements. A combination of statistical methods was used to determine the correlations between the metals and detect species with significantly high or low concentrations of these metals. Bioaccumulation factors were calculated to compare sponge metal content to local sediment. Theonella swinhoei contained an extremely high concentration of arsenic and barium, much higher (at least 200 times) than all other species and local sediment. Hyrtios erecta had significantly higher concentration of Al, Cr, Fe, Mn, Ti and V than all other species. This is due to sediment accumulation and inclusion in the skeleton fibers of this sponge species. Suberites clavatus was found to contain significantly higher concentration of Cd, Co, Ni and Zn than all other species and local sediment, indicating active accumulation of these metals. It also has the second highest Fe concentration, but without the comparably high concentrations of Al, Mn and Ti that are evident in H. erecta and in local sediment. These differences indicate active uptake and accumulation of Fe in S. clavatus, this was also noted in Niphates rowi. A significantly higher B concentration was found in Crella cyatophora compared to all other species. These results indicate specific roles of trace elements in certain sponge species that deserve further analysis. They also serve as a baseline to monitor the effects of anthropogenic disturbances on Eilat’s coral reefs.

Singleton TA, Burgess IB, Nerger BA, Goulet-Hanssens A, Koay N, Barrett CJ, Aizenberg J. Photo-tuning of Highly Selective Wetting in Inverse Opals. Soft Matter. 2014;10 (9) :1325-1328. Publisher's VersionAbstract

Crack-free inverse opals exhibit a sharply defined threshold wettability for infiltration that has enabled their use as colourimetric indicators for liquid identification. Here we demonstrate direct and continuous photo-tuning of this wetting threshold in inverse opals whose surfaces are function- alized with a polymer doped with azobenzene chromophores.

Howell C, Vu TL, Lin JJ, Kolle S, Juthani N, Watson E, Weaver JC, Alvarenga J, Aizenberg J. Self-Replenishing Vascularized Fouling-Release Surfaces. ACS Appl. Mater. Interfaces. 2014;6 (15) :13299-13307. Full TextAbstract

Inspired by the long-term effectiveness of living
antifouling materials, we have developed a method for the self-
replenishment of synthetic biofouling-release surfaces. These
surfaces are created by either molding or directly embedding
3D vascular systems into polydimethylsiloxane (PDMS) and
filling them with a silicone oil to generate a nontoxic oil-
infused material. When replenished with silicone oil from an
outside source, these materials are capable of self-lubrication
and continuous renewal of the interfacial fouling-release layer.
Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella salina, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.

 

 

 

  • Faculty Associate, Harvard University Center for the Environment

 

  • Participant, Nanoscale Science and Engineering Center

 

  • Participant, Materials Research Science and Engineering Center

 

  • Faculty Affiliate, BASF Advanced Research Initiative at Harvard
 
2019 Elected to the National Academy of Engineering  
2019 Elected to the National Academy of Sciences  
2019 Named Lectureships: William Mong Distinguished Lectureship, University of Hong Kong; 41st
Two Genes Memorial Lectureship, Northwestern University; Douglas G. Hill Memorial
Lectureship, Duke University; Sukant Tripathy Endowed Lectureship, UMass, Lowell
 
2018 Debye Visiting Chair 2018, Utrecht University, The Netherlands  
2018 The Seidman Family Lectureship, Tel-Aviv University, Israel  
2017 Elected External Member of the Max Planck Society  
2017 MRS Medal  
2017 Kavli Innovations in Chemistry Leader Award, ACS  
2017 Hinshelwood Lecturer 2017, University of Oxford, UK  
2017 Havinga Medal, Havinga Foundation of the Leiden Institute of Chemistry of Leiden University, The Netherlands
2016 Distinguished Professor Eindhoven University of Technology, Netherlands
2016 Elected into the American Philosophical Society
2016  Honorary Doctorate and Professorship, Eindhoven University of Technology, The Netherlands
2016 Named Lectureships: Arthur Newell Talbot Distinguished Lectureship, UIUC; Marple Schweitzer Lectureship, Northwestern University; Closs Lectureship, University of Chicago
2015 George Ledlie Prize for most valuable contribution to science, Harvard University 
2014 Member of the American Academy of Arts and Sciences, April 2014
2014 Materials Research Society Fellow, February 2014
2014 Alexander M. Cruickshank Award Lectureship, Biointerface Science Gordon Research Conference, June 2014
2013 R&D 100 Award for Top Technology and Innovation in 2013
2013 Fellow of the American Physical Society, March 2013
2013 Hood Fellowship, University of Auckland, NZ, February 2013
2012 R&D 100 Award for Top Technology and Innovation in 2012
2012 Karcher & Barton distinguished lectureship, U Oklahoma, November 2012
2012 Franklin Award Lectureship, RiceUniversity, January 2012
2011 Dorothy Crowfoot Hodgkin Award Lectureship, University of Zurich, October 2011
2011 The 2011 Sproull Lecturer, Cornell University
2011 Dow Foundation Distinguished Lecturer, University of California, Santa Barbara
2011 WISEST Visiting Scholar, University of Illinois - Chicago
2011 Etter Memorial Lectureship in Chemistry, University of Minnesota,
2011 The Woodward Lecturer in the Chemical Sciences, Harvard University
2011 Distinguished Herbert Morawetz Lectureship, NYU-Poly
2010 W. J. Chute Distinguished Lectureship in Chemistry, Dalhousie University
2010 Molecular Foundry Distinguished Lectureship, Lawrence Berkeley National Labs, Berkeley
2010 The Eastman Chemical Company Award Lectureship, Goodyear Polymer Center, University of Akron
2010 Distinguished Lectureship at the Bio-X "Frontiers in Interdisciplinary Biosciences" series at Stanford University
2010 Jerome B. Cohen Distinguished Lectureship, Northwestern University
2010 Distinguished Naff Lectureship, University of Kentucky
2008 Ronald Breslow Award for the Achievement in Biomimetic Chemistry, ACS
2007 Industrial Innovation Award, American Chemical Society
2006 Outstanding Women Scientists Award, Indiana University
2005 Lucent Chairman’s Award
2005 Pedersen Award Lecture, DuPont
2004 ACS PROGRESS Lectureship Award, University of Wisconsin at Madison
2003 Distinguished Women Scientists Lectureship, University of Texas at Austin
2001 New Investigator Award in Chemistry and Biology of Mineralized Tissues
1999 Arthur K. Doolittle Award of the American Chemical Society (ACS)
1995 Award of the Max-Planck Society in Biology and Materials Science, Germany

Positions & Employment 

Harvard School of Engineering and Applied Sciences

  • 2007-Present: Faculty Member

Bell Laboratories, Lucent Technologies

  • 1998-2007: Researcher, Nanotechnology Research Department

Harvard University, Department of Chemistry and Chemical Biology

  • 1996-1998: Postdoctoral Associate with Professor George M. Whitesides


Brookhaven National Laboratory, National Synchrotron Light Source

  • 1993-1995: Visiting Scientist

Moscow Institute of Geology, Moscow, USSR

  • 1986-1991: Researcher

Institute of Mining and Raw Materials, Moscow, USSR

  • 1984-1985: Chemist

Education

    • B.S., 1981, Chemistry, Moscow State University
    • M.S., 1984, Physical Chemistry, Moscow State University
    • Ph.D., 1996, Structural Biology, Weizmann Institute of Science

Other Experience 

    • Director of Science Programs, Radcliffe Institute for Advanced Study, 2010-2013
    • Member of the Board of Directors of the Materials 
      Research Society (MRS)
    • Member of the Board on Physics and Astronomy of the 
      National Academies

    • Member of the Advisory Board of Langmuir