Aizenberg, Joanna

2013
He X, Friedlander RS, Zarzar LD, Aizenberg J. Chemo-Mechanically Regulated Oscillation of an Enzymatic Reaction. Chem. Mater. 2013;25 (4) :521-523. Publisher's Version
Burgess IB, Aizenberg J, Loncar M. Creating bio-inspired hierarchical 3D–2D photonic stacks via planar lithography on self-assembled inverse opals. Bioinspiration & Biomimetics. 2013;8 :045004. Publisher's VersionAbstract
Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top–down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top–down and bottom–up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top–down and bottom–up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D–2D photonic crystal devices.
Kats MA, Byrnes SJ, Blanchard R, Kolle M, Genevet P, Aizenberg J, Capasso F. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings. Appl. Phys. Lett. 2013;103 :101104. Publisher's VersionAbstract
Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.
Kim P, Kreder MJ, Alvarenga J, Aizenberg J. Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates. Nano Lett. 2013;13 (4) :1793-1799. Publisher's VersionAbstract
Lubricant-infused textured solid substrates are gaining remarkable interest as a new class of omni-repellent nonfouling materials and surface coatings. We investigated the effect of the length scale and hierarchy of the surface topography of the underlying substrates on their ability to retain the lubricant under high shear conditions, which is important for maintaining nonwetting properties under application-relevant conditions. By comparing the lubricant loss, contact angle hysteresis, and sliding angles for water and ethanol droplets on flat, microscale, nanoscale, and hierarchically textured surfaces subjected to various spinning rates (from 100 to 10 000 rpm), we show that lubricant-infused textured surfaces with uniform nanofeatures provide the most shear-tolerant liquid-repellent behavior, unlike lotus leaf-inspired superhydrophobic surfaces, which generally favor hierarchical structures for improved pressure stability and low contact angle hysteresis. On the basis of these findings, we present generalized, low-cost, and scalable methods to manufacture uniform or regionally patterned nanotextured coatings on arbitrary materials and complex shapes. After functionalization and lubrication, these coatings show robust, shear-tolerant omniphobic behavior, transparency, and nonfouling properties against highly contaminating media.
Grinthal A, Aizenberg J. Hydrogel-Actuated Integrated Responsive Systems (HAIRS): Creating Cilia-like "Hairy" Surfaces. In: den Toonder J, Onck P Cambridge, U.K. RSC ; 2013. pp. 162-185.
Kim P, Alvarenga J, Aizenberg J, Sleeper RS. Hydroglyphics: Demonstration of Selective Wetting on Hydrophilic and Hydrophobic Surfaces. J. Chem. Educ. 2013. Publisher's Version
Wilson PW, Lu W, Xu H, Kim P, Kreder MJ, Alvarenga J, Aizenberg J. Inhibition of Ice Nucleation by Slippery Liquid-Infused Porous Surfaces (SLIPS). Physical Chemistry Chemical Physics. 2013;15 :581-585. Full TextAbstract
Ice repellent coatings have been studied and keenly sought after for many years, where any advances in the durability of such coatings will result in huge energy savings across many fields. Progress in creating anti-ice and anti-frost surfaces has been particularly rapid since the discovery and development of slippery, liquid infused porous surfaces (SLIPS). Here we use SLIPS-coated differential scanning calorimeter (DSC) pans to investigate the effects of the surface modification on the nucleation of supercooled water. This investigation is inherently different from previous studies which looked at the adhesion of ice to SLIPS surfaces, or the formation of ice under high humidity conditions. Given the stochastic nature of nucleation of ice from supercooled water, multiple runs on the same sample are needed to determine if a given surface coating has a real and statistically significant effect on the nucleation temperature. We have cycled supercooling to freezing and then thawing of deionized water in hydrophilic (untreated aluminum), hydrophobic, superhydrophobic, and SLIPS-treated DSC pans multiple times to determine the effects of surface treatment on the nucleation and subsequent growth of ice. We find that SLIPS coatings lower the nucleation temperature of supercooled water in contact with statistical significance and show no deterioration or change in the coating performance even after 150 freeze–thaw cycles.
Daniel D, Mankin MN, Belisle RA, Wong T-S, Aizenberg J. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures. Appl. Phys. Lett. 2013;102 :231603. Full TextAbstract
Omniphobic surfaces that can repel fluids at temperatures higher than 100 °C are rare. Most state-of-the-art liquid-repellent materials are based on the lotus effect, where a thin air layer is maintained throughout micro/nanotextures leading to high mobility of liquids. However, such behavior eventually fails at elevated temperatures when the surface tension of test liquids decreases significantly. Here, we demonstrate a class of lubricant-infused structuredsurfaces that can maintain a robust omniphobic state even for low-surface-tension liquids at temperatures up to at least 200 °C. We also demonstrate how liquid mobility on such surfaces can be tuned by a factor of 1000.
Kim P, Hu Y, Alvarenga J, Kolle M, Suo Z, Aizenberg J. Rational Design of Mechano-Responsive Optical Materials by Fine Tuning the Evolution of Strain-Dependent Wrinkling Patterns. Adv. Optical Mater. 2013;1 (5) :381-388. Publisher's VersionAbstract
Rational design strategies for mechano‐responsive optical material systems are created by introducing a simple experimental system that can continuously vary the state of bi‐axial stress to induce various wrinkling patterns, including stripes, labyrinths, herringbones, and rarely observed checkerboards, that can dynamically tune the optical properties. In particular, a switching of two orthogonally oriented stripe wrinkle patterns from oxidized polydimethylsiloxane around the critical strain value is reported, as well as the coexistence of these wrinkles forming elusive checkerboard patterns, which are predicted only in previous simulations. These strain‐induced wrinkle patterns give rise to dynamic changes in optical transmittance and diffraction patterns. A theoretical description of the observed pattern formation is presented which accounts for the residual stress in the membrane and allows for the fine‐tuning of the window of switching of the orthogonal wrinkles. Applications of wrinkle‐induced changes in optical properties are demonstrated, including a mechanically responsive instantaneous privacy screen and a transparent sheet that reversibly reveals a message or graphic and dynamically switches the transmittance when stretched and released.
Noorduin W, Grinthal A, Mahadevan L, Aizenberg J. Rationally Designed Complex Hierarchical Microarchitectures. Science. 2013;340 :832-837. Publisher's VersionAbstract
The emergence of complex nano- and microstructures is of fundamental interest, and the ability to program their form has practical ramifications in fields such as optics, catalysis, and electronics. We developed carbonate-silica microstructures in a dynamic reaction-diffusion system that allow us to rationally devise schemes for precisely sculpting a great variety of elementary shapes by diffusion of carbon dioxide (CO2) in a solution of barium chloride and sodium metasilicate. We identify two distinct growth modes and show how continuous and discrete modulations in CO2 concentration, pH, and temperature can be used to deterministically switch between different regimes and create a bouquet of hierarchically assembled multiscale microstructures with unprecedented levels of complexity and precision. These results outline a nanotechnology strategy for "collaborating" with self-assembly processes in real time to build arbitrary tectonic architectures.
Mishchenko L, Aizenberg J, Hatton BD. Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches. Adv. Funct. Mater. 2013;23 (36) :4577-4584. Publisher's VersionAbstract
Certain natural organisms use micro‐patterned surface chemistry, or ice‐nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom‐up deposition process is used to take advantage of the limited contact area of a non‐wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescence of micrometer‐scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice‐nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer‐scale condensation and freezing phenomena, and as a model for natural systems.
Vogel N, Belisle RA, Hatton B, Wong TS, Aizenberg J. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nature Communications. 2013;4. Publisher's VersionAbstract
A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show how this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.
2012
Raymond KP, Burgess IB, Kinney MH, Loncar M, Aizenberg J. Combinatorial Wetting in Colour: An Optofluidic Nose. Lab on a Chip. 2012;12 :3666-3669. LabChip2012.Raymond.pdf
Kim P, Wong TS, Alvarenga J, Kreder MJ, Adorno-Martinez WE, Aizenberg J. Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance. ACS Nano. 2012;6 (8) :6569-6577. Kim2012.ACSNano.pdf
Epstein AK, Wong TS, Belisle RA, Boggs EM, Aizenberg J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Nat. Acad. Sci. USA. 2012;109 (33) :13182-13187. PNAS-2012-Epstein-1201973109.pdf
Caldara M, Friedlander RS, Kavanaugh NL, Aizenberg J, Foster KR, Ribbeck K. Mucin Biopolymers Prevent Bacterial Aggregation by Retaining Cells in the Free-Swimming State. Current Biology. 2012;22 (24) :2325-2330. 2012CurrentBIology_mucin.pdf
Zarzar LD, Liu Q, He X, Hu Y, Suo Z, Aizenberg J. Multifunctional Actuation Systems Responding to Chemical Gradients. Soft Matter. 2012;8 (32) :8289-8293. SoftMatter_Zarzar2012.pdf
Zarzar LD, Swartzentruber BS, Harper JC, Dunphy DR, Brinker CJ, Aizenberg J, and Kaehr B. Multiphoton Lithography of Nanocrystalline Platinum and Palladium for Site-Specific Catalysis in 3D Microenvironments. J. Am. Chem. Soc. 2012;134 (9) :4007-4010. JACS2012.Lauren.pdf
Mishchenko L, Hatton B, Kolle M, Aizenberg J. Patterning Hierarchy in Direct and Inverse Opal Crystals. Small. 2012;8 (12) :1904-1911. 2012Small.Mishchenko.patterning_hierarchy.pdf
Burgoyne H, Kim P, Kolle M, Epstein AK, Aizenberg J. Screening Conditions for Rationally Engineered Electrodeposition of Nanostructures (SCREEN): Electrodeposition and Applications of Polypyrrole Nanofibers using MIcrofluidic Gradients. Small. 2012;8 (22) :3502-3509. Burgoyne_Small2012.pdf

Pages