Koay, Natalie

2015
Vogel N, Utech S, England GT, Shirman T, Phillips KR, Koay N, Burgess IB, Kolle M, Weitz DA, Aizenberg J. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies. Proc. Nat. Acad. Sci. 2015;112 (35) :10845-10850. Publisher's VersionAbstract
Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature.
2014
Koay N, Burgess I, Kay T, Nerger B, Miles-Rossouw M, Shirman T, Vu T, England G, Phillips K, Utech S, et al. Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments. Opt. Express. 2014;22 (23) :27750-27768. Publisher's VersionAbstract

We present a simple one-pot co-assembly method for the synthesis of hierarchically structured pigment particles consisting of silica inverse-opal bricks that are doped with plasmonic absorbers. We study the interplay between the plasmonic and photonic resonances and their effect on the visual appearance of macroscopic collections of photonic bricks that are distributed in randomized orientations. Manipulating the pore geometry tunes the wavelength- and angle-dependence of the scattering profile, which can be engineered to produce angle-dependent Bragg resonances that can either enhance or contrast with the color produced by the plasmonic absorber. By controlling the overall dimensions of the photonic bricks and their aspect ratios, their preferential alignment can either be encouraged or suppressed. This causes the Bragg resonance to appear either as uniform color travel in the former case or as sparse iridescent sparkle in the latter case. By manipulating the surface chemistry of these photonic bricks, which introduces a fourth length-scale (molecular) of independent tuning into our design, we can further engineer interactions between liquids and the pores. This allows the structural color to be maintained in oil-based formulations, and enables the creation of dynamic liquid-responsive images from the pigment.

Singleton TA, Burgess IB, Nerger BA, Goulet-Hanssens A, Koay N, Barrett CJ, Aizenberg J. Photo-tuning of Highly Selective Wetting in Inverse Opals. Soft Matter. 2014;10 (9) :1325-1328. Publisher's VersionAbstract

Crack-free inverse opals exhibit a sharply defined threshold wettability for infiltration that has enabled their use as colourimetric indicators for liquid identification. Here we demonstrate direct and continuous photo-tuning of this wetting threshold in inverse opals whose surfaces are function- alized with a polymer doped with azobenzene chromophores.

2013
Burgess IB, Nerger BA, Raymond KP, Goulet-Hanssens A, Singleton TA, Kinney MH, Shneidman AV, Koay N, Barrett CJ, Loncar M, et al. Wetting in Color: From photonic fingerprinting of liquids to optical control of liquid percolation. Proc. of SPIE. 2013;8632 :863201. Publisher's VersionAbstract

We provide an overview of our recent advances in the manipulation of wetting in inverse-opal photonic crystals. Exploiting photonic crystals with spatially patterned surface chemistry to confine the infiltration of fluids to liquidspecific spatial patterns, we developed a highly selective scheme for colorimetry, where organic liquids are distinguished based on wetting. The high selectivity of wetting, upon-which the sensitivity of the response relies, and the bright iridescent color, which disappears when the pores are filled with liquid, are both a result of the highly symmetric pore structure of our inverse-opal films. The application of horizontally or vertically orientated gradients in the surface chemistry allows a unique response to be tailored to specific liquids. While the generic nature of wetting makes our approach to colorimetry suitable for applications in liquid authentication or identification across a broad range of industries, it also ensures chemical non-specificity. However, we show that chemical specificity can be achieved combinatorially using an array of indicators that each exploits different chemical gradients to cover the same dynamic range of response. Finally, incorporating a photo-responsive polyelectrolyte surface layer into the pores, we are able to dynamically and continuously photo-tune the wetting response, even while the film is immersed in liquid. This in situ optical control of liquid percolation in our photonic-crystal films may also provide an error-free means to tailor indicator response, naturally compensating for batch-to-batch variability in the pore geometry.

2012
Burgess IB, Koay N, Raymond KP, Kolle M, Loncar M, and Aizenberg J. Wetting in Color: Colorimetric Differentiation of Organic Liquids with High Selectivity. ACS Nano. 2012;6 (12) :1427-1437. WICK_ACS_Nano.pdf