Belisle, Rebecca

2013
Daniel D, Mankin MN, Belisle RA, Wong T-S, Aizenberg J. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures. Appl. Phys. Lett. 2013;102 :231603. Full TextAbstract
Omniphobic surfaces that can repel fluids at temperatures higher than 100 °C are rare. Most state-of-the-art liquid-repellent materials are based on the lotus effect, where a thin air layer is maintained throughout micro/nanotextures leading to high mobility of liquids. However, such behavior eventually fails at elevated temperatures when the surface tension of test liquids decreases significantly. Here, we demonstrate a class of lubricant-infused structuredsurfaces that can maintain a robust omniphobic state even for low-surface-tension liquids at temperatures up to at least 200 °C. We also demonstrate how liquid mobility on such surfaces can be tuned by a factor of 1000.
Vogel N, Belisle RA, Hatton B, Wong TS, Aizenberg J. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nature Communications. 2013;4. Publisher's VersionAbstract
A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show how this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.
2012
Epstein AK, Wong TS, Belisle RA, Boggs EM, Aizenberg J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Nat. Acad. Sci. USA. 2012;109 (33) :13182-13187. PNAS-2012-Epstein-1201973109.pdf