Hou, Xu

2018
Hou X, Li J, Tesler AB, Yao Y, Wang M, Min L, Sheng Z, Aizenberg J. Dynamic air/liquid pockets for guiding microscale flow. Nat. Commun. 2018;9 :733. Full TextAbstract

Microscale flows of fluids are mainly guided either by solid matrices or by liquid–liquid interfaces. However, the solid matrices are plagued with persistent fouling problems, while liquid–liquid interfaces are limited to low-pressure applications. Here we report a dynamic liquid/solid/gas material containing both air and liquid pockets, which are formed by partially infiltrating a porous matrix with a functional liquid. Using detailed theoretical and experimental data, we show that the distribution of the air- and liquid-filled pores is responsive to pressure and enables the formation and instantaneous recovery of stable liquid–liquid interfaces that sustain a wide range of pressures and prevent channel contamination. This adaptive design is demonstrated for polymeric materials and extended to metal-based systems that can achieve unmatched mechanical and thermal stability. Our platform with its unique adaptive pressure and antifouling capabilities may offer potential solutions to flow control in microfluidics, medical devices, microscale synthesis, and biological assays.

2017
Hou X, Zhang YS, Trujillo-de Santiago G, Alvarez MM, Ribas J, Jonas SJ, Weiss PS, Andrews AM, Aizenberg J, Khademhosseini A. Interplay between materials and microfluidics. Nat. Rev. Mater. 2017;2 (5) :17016. Publisher's VersionAbstract

Developments in the field of microfluidics have triggered technological revolutions in many disciplines, including chemical synthesis, electronics, diagnostics, single-cell analysis, micro- and nanofabrication, and pharmaceutics. In many of these areas, rapid growth is driven by the increasing synergy between fundamental materials development and new microfluidic capabilities. In this Review, we critically evaluate both how recent advances in materials fabrication have expanded the frontiers of microfluidic platforms and how the improved microfluidic capabilities are, in turn, furthering materials design. We discuss how various inorganic and organic materials enable the fabrication of systems with advanced mechanical, optical, chemical, electrical and biointerfacial properties — in particular, when these materials are combined into new hybrids and modular configurations. The increasing sophistication of microfluidic techniques has also expanded the range of resources available for the fabrication of new materials, including particles and fibres with specific functionalities, 3D (bio)printed composites and organoids. Together, these advances lead to complex, multifunctional systems, which have many interesting potential applications, especially in the biomedical and bioengineering domains. Future exploration of the interactions between materials science and microfluidics will continue to enrich the diversity of applications across engineering as well as the physical and biomedical sciences.

2015
Hou X, Hu Y, Grinthal A, Khan M, Aizenberg J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature. 2015;519 (7541) :70-73. Full TextAbstract
Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems. But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable. Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air–water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.
Howell C, Vu TL, Johnson CP, Hou X, Ahanotu O, Alvarenga J, Leslie DC, Uzun O, Waterhouse A, Kim P, et al. Stability of Surface-Immobilized Lubricant Interfaces under Flow. Chem. Mater. 2015;27 (5) :1792-1800. Full TextAbstract
The stability and longevity of surface-stabilized lubricant layers is a critical question in their application as low- and nonfouling slippery surface treatments in both industry and medicine. Here, we investigate lubricant loss from surfaces under flow in water using both quantitative analysis and visualization, testing the effects of underlying surface type (nanostructured versus flat), as well as flow rate in the physiologically relevant range, lubricant type, and time. We find lubricant losses on the order of only ng/cm2 in a closed system, indicating that these interfaces are relatively stable under the flow conditions tested. No notable differences emerged between surface type, flow rate, lubricant type, or time. However, exposure of the lubricant layers to an air/water interface did significantly increase the amount of lubricant removed from the surface, leading to disruption of the layer. These results may help in the development and design of materials using surface-immobilized lubricant interfaces for repellency under flow conditions.