Publications

2015
Kaplan CN, Wu N, Mandre S, Aizenberg J, Mahadevan L. Dynamics of evaporative colloidal patterning. Physics of Fluids. 2015;27 (9) :092105. Full TextAbstract

Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporationrate.

Li L, Kolle S, Weaver JC, Ortiz C, Aizenberg J, Kolle M. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet. Nat. Commun. 2015;6 :6322. Full TextAbstract
Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.
Hou X, Hu Y, Grinthal A, Khan M, Aizenberg J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature. 2015;519 (7541) :70-73. Full TextAbstract
Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems. But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable. Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air–water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.
MacCallum N, Howell C, Kim P, Sun D, Friedlander R, Ranisau J, Ahanotu O, Lin JJ, Vena A, Hatton B, et al. Liquid-Infused Silicone As a Biofouling-Free Medical Material. ACS Biomater. Sci. Eng. 2015;1 (1) :43-51.Abstract
There is a dire need for infection prevention strategies that do not require the use of antibiotics, which exacerbate the rise of multi- and pan-drug resistant infectious organisms. An important target in this area is the bacterial attachment and subsequent biofilm formation on medical devices (e.g., catheters). Here we describe nonfouling, lubricant-infused slippery polymers as proof-of-concept medical materials that are based on oil-infused polydimethylsiloxane (iPDMS). Planar and tubular geometry silicone substrates can be infused with nontoxic silicone oil to create a stable, extremely slippery interface that exhibits exceptionally low bacterial adhesion and prevents biofilm formation. Analysis of a flow culture of Pseudomonas aeruginosa through untreated PDMS and iPDMS tubing shows at least an order of magnitude reduction of biofilm formation on iPDMS, and almost complete absence of biofilm on iPDMS after a gentle water rinse. The iPDMS materials can be applied as a coating on other polymers or prepared by simply immersing silicone tubing in silicone oil, and are compatible with traditional sterilization methods. As a demonstration, we show the preparation of silicone-coated polyurethane catheters and significant reduction of Escherichia coli and Staphylococcus epidermidis biofilm formation on the catheter surface. This work represents an important first step toward a simple and effective means of preventing bacterial adhesion on a wide range of materials used for medical devices.
Li L, Connors MJ, Kolle M, England GT, Speiser DI, Xiao X, Aizenberg J, Ortiz C. Multifunctionality of chiton biomineralized armor with an integrated visual system. Science. 2015;350 (6263) :952-956. Full TextAbstract
Nature provides a multitude of examples of multifunctional structural materials in which trade-offs are imposed by conflicting functional requirements. One such example is the biomineralized armor of the chiton Acanthopleura granulata, which incorporates an integrated sensory system that includes hundreds of eyes with aragonite-based lenses. We use optical experiments to demonstrate that these microscopic lenses are able to form images. Light scattering by the polycrystalline lenses is minimized by the use of relatively large, crystallographically aligned grains. Multiscale mechanical testing reveals that as the size, complexity, and functionality of the integrated sensory elements increase, the local mechanical performance of the armor decreases. However, A. granulata has evolved several strategies to compensate for its mechanical vulnerabilities to form a multipurpose system with co-optimized optical and structural functions.
Monn MA, Weaver JC, Zhang T, Aizenberg J, Kesari H. New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum. Proc. Nat. Acad. Sci. 2015;112 (16) :4976-4981. Publisher's VersionAbstract
To adapt to a wide range of physically demanding environmental conditions, biological systems have evolved a diverse variety of robust skeletal architectures. One such example, Euplectella aspergillum, is a sediment-dwelling marine sponge that is anchored into the sea floor by a flexible holdfast apparatus consisting of thousands of anchor spicules (long, hair-like glassy fibers). Each spicule is covered with recurved barbs and has an internal architecture consisting of a solid core of silica surrounded by an assembly of coaxial silica cylinders, each of which is separated by a thin organic layer. The thickness of each silica cylinder progressively decreases from the spicule’s core to its periphery, which we hypothesize is an adaptation for redistributing internal stresses, thus increasing the overall strength of each spicule. To evaluate this hypothesis, we created a spicule structural mechanics model, in which we fixed the radii of the silica cylinders such that the force transmitted from the surface barbs to the remainder of the skeletal system was maximized. Compared with measurements of these parameters in the native sponge spicules, our modeling results correlate remarkably well, highlighting the beneficial nature of this elastically heterogeneous lamellar design strategy. The structural principles obtained from this study thus provide potential design insights for the fabrication of high-strength beams for load-bearing applications through the modification of their internal architecture, rather than their external geometry.
Howell C, Vu TL, Johnson CP, Hou X, Ahanotu O, Alvarenga J, Leslie DC, Uzun O, Waterhouse A, Kim P, et al. Stability of Surface-Immobilized Lubricant Interfaces under Flow. Chem. Mater. 2015;27 (5) :1792-1800. Full TextAbstract
The stability and longevity of surface-stabilized lubricant layers is a critical question in their application as low- and nonfouling slippery surface treatments in both industry and medicine. Here, we investigate lubricant loss from surfaces under flow in water using both quantitative analysis and visualization, testing the effects of underlying surface type (nanostructured versus flat), as well as flow rate in the physiologically relevant range, lubricant type, and time. We find lubricant losses on the order of only ng/cm2 in a closed system, indicating that these interfaces are relatively stable under the flow conditions tested. No notable differences emerged between surface type, flow rate, lubricant type, or time. However, exposure of the lubricant layers to an air/water interface did significantly increase the amount of lubricant removed from the surface, leading to disruption of the layer. These results may help in the development and design of materials using surface-immobilized lubricant interfaces for repellency under flow conditions.
Tesler AB, Kim P, Kolle S, Howell C, Ahanotu O, Aizenberg J. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nat. Commun. 2015;6 :8649. Full TextAbstract
Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.
2014
Aizenberg J. Slippery Liquid-Infused Porous Surfaces. The Journal of Ocean Technology. 2014;9 (4) :113-114.Abstract

Marine biofouling, the process of accumulation of microorganisms, plants, algae and animals on submerged surfaces, is an age-old problem associated with any maritime activity affecting commercial and recreational shipping activities, naval operations, aquaculture facilities and marine renewable energy structures alike. The adverse effects of marine biofouling include the increase of drag on ship hulls, damage to ships and maritime equipment such as corrosion, the spread of diseases in aquaculture and the distribution of invasive species causing extensive damage to coastal ecosystems and the benefits derived from them. An estimated global annual total of $60 billion in fuel cost alone can be saved by the application of marine antifouling coatings, making the treatment of marine biofouling a necessity not an option.

England G, Kolle M, Kim P, Khan M, Munoz P, Mazur E, Aizenberg J. Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna. Proc. Nat. Acad. Sci. 2014;111 (44) :15630–15634. Full TextAbstract

Recently, diffraction elements that reverse the color sequence normally observed in planar diffraction gratings have been found in the wing scales of the butterfly Pierella luna. Here, we describe the creation of an artificial photonic material mimicking this re- verse color-order diffraction effect. The bioinspired system con- sists of ordered arrays of vertically oriented microdiffraction gratings. We present a detailed analysis and modeling of the cou- pling of diffraction resulting from individual structural compo- nents and demonstrate its strong dependence on the orientation of the individual miniature gratings. This photonic material could provide a basis for novel developments in biosensing, anticoun- terfeiting, and efficient light management in photovoltaic systems and light-emitting diodes.

Leslie DC, Waterhouse A, Berthet JB, Valentin TM, Watters AL, Jain A, Kim P, Hatton BD, Nedder A, Donovan K, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nature Biotechnology. 2014;32 (11) :1134-1140. Full TextAbstract

Thrombosis and biofouling of extracorporeal circuits and indwelling medical devices cause significant morbidity and mortality worldwide. We apply a bioinspired, omniphobic coating to tubing and catheters and show that it completely repels blood and suppresses biofilm formation. The coating is a covalently tethered, flexible molecular layer of perfluorocarbon, which holds a thin liquid film of medical-grade perfluorocarbon on the surface. This coating prevents fibrin attachment, reduces platelet adhesion and activation, suppresses biofilm formation and is stable under blood flow in vitro. Surface-coated medical-grade tubing and catheters, assembled into arteriovenous shunts and implanted in pigs, remain patent for at least 8 h without anticoagulation. This surface-coating technology could reduce the use of anticoagulants in patients and help to prevent thrombotic occlusion and biofouling of medical devices.

Hashmi B, Zarzar LD, Mammoto T, Jiang A, Aizenberg J, Ingber DE. Developmentally-Inspired Shrink-Wrap Polymers for Mechanical Induction of Tissue Differentiation. Adv. Mater. 2014;26 (20) :3253-3257. Publisher's VersionAbstract
A biologically inspired thermoresponsive polymer has been developed that mechanically induces tooth differentiation in vitro and in vivo by promoting mesenchymal cell compaction as seen in each pore of the scaffold. This normally occurs during the physiological mesenchymal condensation response that triggers tooth formation in the embryo.
Phillips KR, Vogel N, Burgess IB, Perry CC, Aizenberg J. Directional Wetting in Anisotropic Inverse Opals. Langmuir. 2014;30 (25) :7615-7620. Publisher's VersionAbstract

Porous materials display interesting transport phenomena due to restricted motion of fluids within the nano- to microscale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy.

Park D, Kim P, Alvarenga J, Jin K, Aizenberg J, Bechtold M. Dynamic daylight control system implementing thin cast arrays of polydimethylsiloxane-based millimeter-scale transparent louvers. Building and Environment. 2014;82 :87-96. Publisher's VersionAbstract

The deep building layouts typical in the U.S. have led to a nearly complete reliance on artificial lighting in standard office buildings. The development of daylight control systems that maximize the penetration and optimize the distribution of natural daylight in buildings has the potential for saving a significant portion of the energy consumed by artificial lighting, but existing systems are either static, costly, or obstruct views towards the outside. We report the Dynamic Daylight Control System (DDCS) that in- tegrates a thin cast transparent polydimethylsiloxane (PDMS)-based deformable array of louvers and waveguides within a millimeter-scale fluidic channel system. This system can be dynamically tuned to the different climates and sun positions to control daylight quality and distribution in the interior space. The series of qualitative and quantitative tests confirmed that DDCS exceeds conventional double glazing system in terms of reducing glare near the window and distributing light to the rear of the space. The system can also be converted to a visually transparent or a translucent glazing by filling the channels with an appropriate fluid. DDCS can be integrated or retrofitted to conventional glazing systems and allow for diffusivity and transmittance control.

Mayzel B, Aizenberg J, Ilan M. The Elemental Composition of Demospongiae from the Red Sea, Gulf of Aqaba. PLoS ONE. 2014;9 (4) :e95775. Full TextAbstract

Trace elements are vital for the growth and development of all organisms. Little is known about the elemental content and trace metal biology of Red Sea demosponges. This study establishes an initial database of sponge elemental content. It provides the necessary foundation for further research of the mechanisms used by sponges to regulate the uptake, accumulation, and storage of metals. The metal content of 16 common sponge species was determined using ICP measurements. A combination of statistical methods was used to determine the correlations between the metals and detect species with significantly high or low concentrations of these metals. Bioaccumulation factors were calculated to compare sponge metal content to local sediment. Theonella swinhoei contained an extremely high concentration of arsenic and barium, much higher (at least 200 times) than all other species and local sediment. Hyrtios erecta had significantly higher concentration of Al, Cr, Fe, Mn, Ti and V than all other species. This is due to sediment accumulation and inclusion in the skeleton fibers of this sponge species. Suberites clavatus was found to contain significantly higher concentration of Cd, Co, Ni and Zn than all other species and local sediment, indicating active accumulation of these metals. It also has the second highest Fe concentration, but without the comparably high concentrations of Al, Mn and Ti that are evident in H. erecta and in local sediment. These differences indicate active uptake and accumulation of Fe in S. clavatus, this was also noted in Niphates rowi. A significantly higher B concentration was found in Crella cyatophora compared to all other species. These results indicate specific roles of trace elements in certain sponge species that deserve further analysis. They also serve as a baseline to monitor the effects of anthropogenic disturbances on Eilat’s coral reefs.

Shillingford C, MacCallum N, Wong TS, Kim P, Aizenberg J. Fabrics coated with lubricated nanostructures display robust omniphobicity. Nanotechnology. 2014;25 (1) :014019. Full TextAbstract

The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

Yao X, Dunn S, Kim P, Duffy M, Alvarenga J, Aizenberg J. Fluorogel Elastomers with Tunable Transparency, Elasticity, Shape- Memory, and Antifouling Properties. Angew. Chem. Int. Ed. 2014;53 (17) :4418-4422. Full TextAbstract

Omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that control the crystallinity of the resulting polymer chains, a broad range of optical and mechanical properties of the fluorogel can be achieved. After infusing with fluorinated lubricants, the fluorogels showed excellent resist- ance to wetting by various liquids and anti-biofouling behavior, while maintaining cytocompatiblity.

Koay N, Burgess I, Kay T, Nerger B, Miles-Rossouw M, Shirman T, Vu T, England G, Phillips K, Utech S, et al. Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments. Opt. Express. 2014;22 (23) :27750-27768. Publisher's VersionAbstract

We present a simple one-pot co-assembly method for the synthesis of hierarchically structured pigment particles consisting of silica inverse-opal bricks that are doped with plasmonic absorbers. We study the interplay between the plasmonic and photonic resonances and their effect on the visual appearance of macroscopic collections of photonic bricks that are distributed in randomized orientations. Manipulating the pore geometry tunes the wavelength- and angle-dependence of the scattering profile, which can be engineered to produce angle-dependent Bragg resonances that can either enhance or contrast with the color produced by the plasmonic absorber. By controlling the overall dimensions of the photonic bricks and their aspect ratios, their preferential alignment can either be encouraged or suppressed. This causes the Bragg resonance to appear either as uniform color travel in the former case or as sparse iridescent sparkle in the latter case. By manipulating the surface chemistry of these photonic bricks, which introduces a fourth length-scale (molecular) of independent tuning into our design, we can further engineer interactions between liquids and the pores. This allows the structural color to be maintained in oil-based formulations, and enables the creation of dynamic liquid-responsive images from the pigment.

Sunny S, Vogel N, Howell C, Vu TL, Aizenberg J. Lubricant-infused Nanoparticulate Coatings Assembled by Layer-by-layer Deposition. Adv. Funct. Mater. 2014;24 (42) :6658-6667.Abstract

Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repel- lency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale sur- face structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more
LbL cycles introduce sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid inter- face that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparti- cles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. The LbL process is conceptu- ally simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.

Grinthal A, Aizenberg J. Mobile Interfaces: Liquids as a Perfect Structural Material for Multifunctional, Antifouling Surfaces. Chem. Mater. 2014;26 (1) :698-708. Full TextAbstract

Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design and fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions -able to operate in harsh, changing environments- not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. With nearly unlimited design possibilities and unmatched interfacial properties, liquid materials -as long-term stable interfaces yet in their fully liquid state- may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.

Pages