Howell C, Vu TL, Lin JJ, Kolle S, Juthani N, Watson E, Weaver JC, Alvarenga J, Aizenberg J. Self-Replenishing Vascularized Fouling-Release Surfaces. ACS Appl. Mater. Interfaces. 2014;6 (15) :13299-13307. Full TextAbstract

Inspired by the long-term effectiveness of living
antifouling materials, we have developed a method for the self-
replenishment of synthetic biofouling-release surfaces. These
surfaces are created by either molding or directly embedding
3D vascular systems into polydimethylsiloxane (PDMS) and
filling them with a silicone oil to generate a nontoxic oil-
infused material. When replenished with silicone oil from an
outside source, these materials are capable of self-lubrication
and continuous renewal of the interfacial fouling-release layer.
Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella salina, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.

Zarzar LD, Aizenberg J. Stimuli-Responsive Chemomechanical Actuation: A Hybrid Materials Approach. Acc. Chem. Res. 2014;47 (2) :530-539. Full TextAbstract

Dynamic materials that can sense changes in their surroundings and functionally respond by altering many of their physical characteristics are primed to be integral components of future “smart” technologies. A fundamental reason for the adaptability of biological organisms is their innate ability to convert environmental or chemical cues into mechanical motion and reconfiguration on both the molecular and macroscale. However, design and engineering of robust chemomechanical behavior in artificial materials has proven a challenge. Such systems can be quite complex and often require intricate coordination between both chemical and mechanical inputs and outputs, as well as the combination of multiple materials working cooperatively to achieve the proper functionality. It is critical to not only understand the fundamental behaviors of existing dynamic chemo- mechanical systems but also apply that knowledge and explore new avenues for design of novel materials platforms that could provide a basis for future adaptive technologies.
In this Account, we explore the chemomechanical behavior, properties, and applications of hybrid-material surfaces consisting of environmentally sensitive hydrogels integrated within arrays of high-aspect-ratio nano- or microstructures. This bio-inspired approach, in which the volume-changing hydrogel acts as the “muscle” that reversibly actuates the microstructured “bones”, is highly tunable and customizable. Although straightforward in concept, the combination of just these two materials (structures and hydrogel) has given rise to a far more complex set of actuation mechanisms and behaviors. Variations in how the hydrogel is physically integrated within the structure array provide the basis for three fundamental mechanisms of actuation, each with its own set of responsive properties and chemomechanical behavior. Further control over how the chemical stimulus is applied to the surface, such as with microfluidics, allows for generation of more precise and varied patterns of actuation. We also discuss the possible applications of these hybrid surfaces for chemomechanical manipulation of reactions, including the generation of chemomechanical feedback loops. Comparing and contrasting these many approaches and techniques, we aim to put into perspective their highly tunable and diverse capabilities but also their future challenges and impacts.

Vasquez Y, Kolle M, Mishchenko L, Hatton BD, Aizenberg J. Three-Phase Co-Assembly: In-situ Incorporation of Nanoparticles into Tunable, Highly-Ordered, Porous Silica FIlms. ACS Photonics. 2014;1 (1) :53-60. Full TextAbstract

We present a reproducible, one-pot colloidal co-assembly approach that results in large-scale, highly ordered porous silica films with embedded, uniformly distributed, accessible gold nanoparticles. The unique coloration of these inverse opal films combines iridescence with plasmonic effects. The coupled optical properties are easily tunable either by changing the concentration of added nanoparticles to the solution before assembly or by localized growth of the embedded Au nanoparticles upon exposure to tetrachloroauric acid solution, after colloidal template removal. The presence of the selectively absorbing particles furthermore enhances the hue and saturation of the inverse opals’ color by suppressing incoherent diffuse scattering. The composition and optical properties of these films are demonstrated to be locally tunable using selective functionalization of the doped opals.

Phillips KR, Vogel N, Hu Y, Kolle M, Perry CC, Aizenberg J. Tunable Anisotropy in Inverse Opals and Emerging Optical Properties. Chem. Mater. 2014;26 (4) :1622-1628. Publisher's VersionAbstract

Using self-assembly, nanoscale materials can be fabricated from the bottom up. Opals and inverse opals are examples of self-assembled nanomaterials made from crystallizing colloidal particles. As self-assembly requires a high level of control, it is challenging to use building blocks with anisotropic geometry to form complex opals, which limits the possible structures. Typically, spherical colloids are employed as building blocks, leading to symmetric, isotropic superstructures. However, a significantly richer palette of directionally dependent properties are expected if less symmetric, anisotropic structures can be created, especially originating from the assembly of regular, spherical particles. Here we show a simple method for introducing anisotropy into inverse opals by subjecting them to a post-assembly thermal treatment that results in directional shrinkage of the silica matrix caused by condensation of partially hydrated sol−gel silica structures. In this way, we can tailor the shape of the pores, and the anisotropy of the final inverse opal preserves the order and uniformity of the self-assembled structure. Further, we prevent the need to synthesize complex oval-shaped particles and crystallize them into such target geometries. Detailed X-ray photoelectron spectroscopy and infrared spectroscopy studies clearly identify increasing degrees of sol−gel condensation in confinement as a mechanism for the structure change. A computer simulation of structure changes resulting from the condensation-induced shrinkage further confirmed this mechanism. As an example of property changes induced by the introduction of anisotropy, we characterized the optical spectra of the anisotropic inverse opals and found that the optical properties can be controlled in a precise way using calcination temperature.

Burgess IB, Nerger BA, Raymond KP, Goulet-Hanssens A, Singleton TA, Kinney MH, Shneidman AV, Koay N, Barrett CJ, Loncar M, et al. Wetting in Color: From photonic fingerprinting of liquids to optical control of liquid percolation. Proc. of SPIE. 2013;8632 :863201. Publisher's VersionAbstract

We provide an overview of our recent advances in the manipulation of wetting in inverse-opal photonic crystals. Exploiting photonic crystals with spatially patterned surface chemistry to confine the infiltration of fluids to liquidspecific spatial patterns, we developed a highly selective scheme for colorimetry, where organic liquids are distinguished based on wetting. The high selectivity of wetting, upon-which the sensitivity of the response relies, and the bright iridescent color, which disappears when the pores are filled with liquid, are both a result of the highly symmetric pore structure of our inverse-opal films. The application of horizontally or vertically orientated gradients in the surface chemistry allows a unique response to be tailored to specific liquids. While the generic nature of wetting makes our approach to colorimetry suitable for applications in liquid authentication or identification across a broad range of industries, it also ensures chemical non-specificity. However, we show that chemical specificity can be achieved combinatorially using an array of indicators that each exploits different chemical gradients to cover the same dynamic range of response. Finally, incorporating a photo-responsive polyelectrolyte surface layer into the pores, we are able to dynamically and continuously photo-tune the wetting response, even while the film is immersed in liquid. This in situ optical control of liquid percolation in our photonic-crystal films may also provide an error-free means to tailor indicator response, naturally compensating for batch-to-batch variability in the pore geometry.

Wong T-S, Sun T, Feng L, Aizenberg J. Interfacial materials with special wettability. MRS Bulletin. 2013;38 :366-371. Publisher's VersionAbstract

Various life forms in nature display a high level of adaptability to their environments through the use of sophisticated material interfaces. This is exemplifi ed by numerous biological systems, such as the self-cleaning of lotus leaves, the water-walking abilities of water striders and spiders, the ultra-slipperiness of pitcher plants, the directional liquid adhesion of butterfl y wings, and the water collection capabilities of beetles, spider webs, and cacti. The versatile interactions of these natural surfaces with fl uids, or special wettability, are enabled by their unique micro/nanoscale surface structures and intrinsic material properties. Many of these biological designs and principles have inspired new classes of functional interfacial materials, which have remarkable potential to solve some of the engineering challenges for industrial and biomedical applications. In this article, we provide a snapshot of the state of the art of biologically inspired materials with special wettability, and discuss some promising future directions for the field.

Aizenberg J, Fratzl P. New Materials through Bioinspiration and Nanoscience. Adv. Funct. Mater. 2013;23 :4398-4399. Publisher's Version
Grinthal A, Aizenberg J. Adaptive all the way down: Building responsive materials from hierarchies of chemomechanical feedback. Chem. Soc. Rev. 2013;42 (17) :7072-7085. Publisher's VersionAbstract
A living organism is a bundle of dynamic, integrated adaptive processes: not only does it continuously respond to constant changes in temperature, sunlight, nutrients, and other features of its environment, but it does so by coordinating hierarchies of feedback among cells, tissues, organs, and networks all continuously adapting to each other. At the root of it all is one of the most fundamental adaptive processes: the constant tug of war between chemistry and mechanics that interweaves chemical signals with endless reconfigurations of macromolecules, fibers, meshworks, and membranes. In this tutorial we explore how such chemomechanical feedback – as an inherently dynamic, iterative process connecting size and time scales – can and has been similarly evoked in synthetic materials to produce a fascinating diversity of complex multiscale responsive behaviors. We discuss how chemical kinetics and architecture can be designed to generate stimulus-induced 3D spatiotemporal waves and topographic patterns within a single bulk material, and how feedback between interior dynamics and surface-wide instabilities can further generate higher order buckling and wrinkling patterns. Building on these phenomena, we show how yet higher levels of feedback and spatiotemporal complexity can be programmed into hybrid materials, and how these mechanisms allow hybrid materials to be further integrated into multicompartmental systems capable of hierarchical chemo-mechano-chemical feedback responses. These responses no doubt represent only a small sample of the chemomechanical feedback behaviors waiting to be discovered in synthetic materials, and enable us to envision nearly limitless possibilities for designing multiresponsive, multifunctional, self-adapting materials and systems.
Yao X, Hu Y, Grinthal A, Wong T-S, Mahadevan L, Aizenberg J. Adaptive fluid-infused porous films with tunable transparency and wettability. Nature Materials. 2013;12 :529-534. Full TextAbstract
Materials that adapt dynamically to environmental changes are currently limited to two-state switching of single properties, and only a small number of strategies that may lead to materials with continuously adjustable characteristics have been reported1-3. Here we introduce adaptive surfaces made of a liquid film supported by a nanoporous elastic substrate. As the substrate deforms, the liquid flows within the pores causing the smooth and defect-free surface to roughen through a continuous range of topographies. We show that a graded mechanical stimulus can be directly translated into finely tuned, dynamic adjustments of optical transparency and wettability. In particular, we demonstrate simultaneous control of the film's transparency and its ability to continuously manipulate various low-surface-tension droplets from free-sliding to pinned. This strategy should make possible the rational design of tunable, multifunctional adaptive materials for a broad range of applications.
Hatton BD, Wheeldon I, Hancock MJ, Kolle M, Aizenberg J, Ingber DE. An artificial vasculature for adaptive thermal control of windows. Solar Energy Materials and Solar Cells. 2013;117 :429-436. Publisher's VersionAbstract
Windows are a major source of energy inefficiency in buildings. In addition, heating by thermal radiation reduces the efficiency of photovoltaic panels. To help reduce heating by solar absorption in both of these cases, we developed a thin, transparent, bio-inspired, convective cooling layer for building windows and solar panels that contains microvasculature with millimeter-scale, fluid-filled channels. The thin cooling layer is composed of optically clear silicone rubber with microchannels fabricated using microfluidic engineering principles. Infrared imaging was used to measure cooling rates as a function of flow rate and water temperature. In these experiments, flowing room temperature water at 2 mL/min reduced the average temperature of a model 10×10 cm2 window by approximately 7–9 °C. An analytic steady-state heat transfer model was developed to augment the experiments and make more general estimates as functions of window size, channel geometry, flow rate, and water temperature. Thin cooling layers may be added to one or more panes in multi-pane windows or as thin film non-structural central layers. Lastly, the color, optical transparency and aesthetics of the windows could be modulated by flowing different fluids that differ in their scattering or absorption properties.
Friedlander RS, Vlamakis H, Kim P, Khan M, Kolter R, Aizenberg J. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc. Nat. Acad. Sci. 2013;110 (14) :5624-5629. Publisher's VersionAbstract
Biofilms, surface-bound communities of microbes, are economically and medically important due to their pathogenic and obstructive properties. Among the numerous strategies to prevent bacterial adhesion and subsequent biofilm formation, surface topography was recently proposed as a highly nonspecific method that does not rely on small-molecule antibacterial compounds, which promote resistance. Here, we provide a detailed investigation of how the introduction of submicrometer crevices to a surface affects attachment of Escherichia coli. These crevices reduce substrate surface area available to the cell body but increase overall surface area. We have found that, during the first 2 h, adhesion to topographic surfaces is significantly reduced compared with flat controls, but this behavior abruptly reverses to significantly increased adhesion at longer exposures. We show that this reversal coincides with bacterially induced wetting transitions and that flagellar filaments aid in adhesion to these wetted topographic surfaces. We demonstrate that flagella are able to reach into crevices, access additional surface area, and produce a dense, fibrous network. Mutants lacking flagella show comparatively reduced adhesion. By varying substrate crevice sizes, we determine the conditions under which having flagella is most advantageous for adhesion. These findings strongly indicate that, in addition to their role in swimming motility, flagella are involved in attachment and can furthermore act as structural elements, enabling bacteria to overcome unfavorable surface topographies. This work contributes insights for the future design of antifouling surfaces and for improved understanding of bacterial behavior in native, structured environments.
Epstein AK, Hong D, Kim P, Aizenberg J. Biofilm attachment reduction on bioinspired, dynamic, microwrinkling surfaces. New J. Phys. 2013;15 :095018. Publisher's VersionAbstract
Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1–100 mm s−1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to  ~ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and  ~ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than  ~ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of  ~ 1 μm. Divergent effects on the attachment of P. aeruginosaStaphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.
Kolle M, Lethbridge A, Kreysing M, Baumberg JJ, Aizenberg J, Vukusic P. Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers. Adv. Mater. 2013;25 (15) :2239-2245. Full Text
Kang SH, Shan S, Noorduin WL, Khan M, Aizenberg J, Bertoldi K. Buckling-Induced Reversible Symmetry Breaking and Amplification of Chirality Using Supported Cellular Structures. Adv. Mater. 2013;25 (24) :3380-3385. Publisher's Version
He X, Friedlander RS, Zarzar LD, Aizenberg J. Chemo-Mechanically Regulated Oscillation of an Enzymatic Reaction. Chem. Mater. 2013;25 (4) :521-523. Publisher's Version
Burgess IB, Aizenberg J, Loncar M. Creating bio-inspired hierarchical 3D–2D photonic stacks via planar lithography on self-assembled inverse opals. Bioinspiration & Biomimetics. 2013;8 :045004. Publisher's VersionAbstract
Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top–down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top–down and bottom–up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top–down and bottom–up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D–2D photonic crystal devices.
Kats MA, Byrnes SJ, Blanchard R, Kolle M, Genevet P, Aizenberg J, Capasso F. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings. Appl. Phys. Lett. 2013;103 :101104. Publisher's VersionAbstract
Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.
Kim P, Kreder MJ, Alvarenga J, Aizenberg J. Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates. Nano Lett. 2013;13 (4) :1793-1799. Publisher's VersionAbstract
Lubricant-infused textured solid substrates are gaining remarkable interest as a new class of omni-repellent nonfouling materials and surface coatings. We investigated the effect of the length scale and hierarchy of the surface topography of the underlying substrates on their ability to retain the lubricant under high shear conditions, which is important for maintaining nonwetting properties under application-relevant conditions. By comparing the lubricant loss, contact angle hysteresis, and sliding angles for water and ethanol droplets on flat, microscale, nanoscale, and hierarchically textured surfaces subjected to various spinning rates (from 100 to 10 000 rpm), we show that lubricant-infused textured surfaces with uniform nanofeatures provide the most shear-tolerant liquid-repellent behavior, unlike lotus leaf-inspired superhydrophobic surfaces, which generally favor hierarchical structures for improved pressure stability and low contact angle hysteresis. On the basis of these findings, we present generalized, low-cost, and scalable methods to manufacture uniform or regionally patterned nanotextured coatings on arbitrary materials and complex shapes. After functionalization and lubrication, these coatings show robust, shear-tolerant omniphobic behavior, transparency, and nonfouling properties against highly contaminating media.
Grinthal A, Aizenberg J. Hydrogel-Actuated Integrated Responsive Systems (HAIRS): Creating Cilia-like "Hairy" Surfaces. In: den Toonder J, Onck P Cambridge, U.K. RSC ; 2013. pp. 162-185.
Kim P, Alvarenga J, Aizenberg J, Sleeper RS. Hydroglyphics: Demonstration of Selective Wetting on Hydrophilic and Hydrophobic Surfaces. J. Chem. Educ. 2013. Publisher's Version