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Capillary-mediated self-assembly and self-organization are useful techniques for constructing ordered

superstructures from nanoscale and microscale building blocks. Square arrays of flexible microfibers

attached to a substrate have been shown to form highly ordered patterns of 2 � 2 fiber clusters

(tetramers) under the influence of capillary forces at the surface of an evaporating liquid layer. We

model this pattern formation as an irreversible sequential adsorption process on a square lattice, in

which tetramers form sequentially on an initially empty lattice and locally enhance the formation of

nearby tetramers, giving rise to partially ordered domains. Restrictions analogous to excluded volume

interactions for hard squares prevent additional tetramers forming at next-and second-neighbor

positions. Two parameters regulate the enhancement in tetramer formation at third- and fourth-near

neighbor positions. We study the model using numerical simulations and compare it to a realization of

a self-organization experiment. The model reproduces many features of the observed patterns when the

two parameters are chosen by a least-squares fit to a single experimental quantity. The fourth-near

neighbor enhancement, not considered in previously studied sequential adsorption models, is shown to

be significant for the pattern formation under study.
1. Introduction

The study of the self-assembly and self-organization of solid

macro-, micro- and nanoscale structures using capillary forces

mediated by a wetting liquid has made an impact in fields ranging

from photonics1 to the theory of computation.2 In recent years,

the phenomenon of elastocapillary coalescence3 has been

observed in aggregation of fibers ranging in size from the

macroscopic scale4,5 down to micro- and nanoscales.6–13 In all

these investigations, capillary forces in a wetting liquid bring

together the free ends of high-aspect-ratio structures attached to

a substrate to form clusters. For highly symmetrical arrangement

of fibers in the individual clusters, a long-range ordering in the

positions of the clusters has been reported.10–13 In particular,

when the fibers are initially arranged in a square lattice and

primarily form 2 � 2 clusters of four individual fibers connected

at the tip, these 2 � 2 clusters themselves are ordered locally in

a square superlattice with a lattice spacing twice that of the

individual fibers (Fig. 1(a)). This ordering mechanism has

potential application not only as a means of creating complex

three-dimensional structures with spatial regularity but also as

a basis for generating dynamic ‘‘smart’’ surfaces capable of

ordered particle trapping and release, color changes and adaptive

wetting behavior.12,14

A number of previous theoretical treatments of capillary-

assisted clustering5,6,8–10,15 have analyzed the elastic, capillary and

surface tension energies associated with fiber clustering to

determine the critical stiffness of the fibers that allows clustering
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to occur, and the typical size/size distribution of clusters.

However, less has been said about the higher-level arrangement,

size and ordering of the clustered domains. A qualitative picture

of long-range ordering of clusters due to the distance dependence

of the capillary interactions between submerged fibers is pre-

sented in ref. 12, and a similar description based on the stability

of upright fibers is reported in ref. 13, but to our knowledge no

quantitative comparison of these descriptions with experimen-

tally observed patterns has been made. The current work

develops this aspect of capillary-mediated clustering of fibers. We

propose, characterize and test a nonequilibrium dynamical

model for the irreversible formation of clusters showing long-

range order in a square array of fibers.

Our approach falls into a broad class of systems known as

sequential adsorption models.16 Sequential adsorption (SA)

models describe deposition of particles on a surface through the

following algorithm: a trial deposition of a particle is made on

the surface (typically empty initially, though a ‘seeded’ surface

with predeposited particles may also be studied); if the particle

does not overlap with any other, the deposition is successful and

the particle is permanently fixed in the chosen spot; if on the

other hand the particle overlaps with an already attached particle

then the trial is rejected. Random sequential adsorption (RSA)

models refer to those in which the position of the trial deposition

is chosen purely at random, while cooperative sequential

adsorption (CSA) processes are those in which the probability of

a trial deposition at any point on the surface is influenced

(typically enhanced) by the presence of deposited particles

nearby. Both RSA and CSA, on continuum surfaces as well as

lattices, have been used to study a variety of physical, chemical

and biological processes (for a comprehensive review see ref. 16).

The questions of interest in studying such models range from

predicting the final coverage of the surface when the system has

evolved until no further deposition takes place (i.e. there is no
Soft Matter, 2010, 6, 2421–2434 | 2421



Fig. 2 Capillary-mediated cooperative clustering. (a) illustrates the

mechanism in a one-dimensional row of fibers whose tips are drawn

together to form dimers (top view, left; side view, right). The large dots in

the top view indicate the bases of upright fibers. When the liquid-air

interface first reaches the upright fiber tips, all interfiber forces are equal.

Now suppose the random formation of a cluster brings fibers g and h

together. The tips of i and h are now further apart than the tips of i and j;

hence i experiences an imbalance of forces (grey arrow) that induces it to

cluster with its neighbor j. Now fiber k experiences a force imbalance, and

the effect of the initial clustering of g and h thus cascades down the lattice.

(b) extends the picture to tetramer formation in two dimensions (top

view). Representative first through fourth neighbor squares or ‘‘pla-

quettes’’ relative to the nucleating tetramer are indicated by numbers 1–4.

Due to the formation of a tetramer, the four highlighted pairs of fibers

experience a force imbalance. As shown for the top pair, there is

a resultant force on each fiber due to capillary attraction with the nearby

fibers and tetramer (whose fibers perturb the ethanol-air interface further

away compared to the unclustered fibers). This increases the probability

of tetramer formation at the ‘A’ position (third-nearest neighbor), and to

a smaller extent at the ‘B’ positions (fourth-nearest neighbors).

Fig. 1 (a) A top-down scanning electron microscope (SEM) image of

a region of an epoxy microfiber sample in which clusters have been

induced via ethanol evaporation and persist due to van der Waals

interactions between the touching fiber tips. Scale bar 50 mm. The region

predominantly shows tetramers, i.e. clusters of four fibers whose tips

meet at a height of a few microns above the substrate, centered above the

squares of the underlying lattice of fibers. The inset (bottom right) is

a close-up view of a tetramer, showing the lattice spacing a of the fibers.

Four distinct domains (as defined in the text) are highlighted and labeled

A–D. (b) A schematic of the lattice of fibers with some formed tetramers

all belonging to a single domain. (In this and following diagrams, each

dot represents the base of an upright fiber while each ‘�’ represents the

top-down view of a tetramer comprising four fibers whose bases remain

on the square lattice but tips come together at the center.) The numbers

show the division of the dual lattice into four sublattices 1–4 corre-

sponding to the four distinct domains shown in (a); the remainder of the

lattice is occupied by a domain whose members occupy sublattice 1. In

the SEM image, we may assign the tetramers of domain A to sublattice 1;

domains B, C and D then belong to sublattices 2, 3 and 4 respectively.
further room for particle deposition and the system reaches

a ‘jammed’ or ‘saturated’ state) to understanding the time

evolution up to jamming as well as the spatial distributions and

correlations of the particles at any stage.

Since the deposition events are irreversible, sequential

adsorption models are typically not amenable to study via tools

of equilibrium statistical mechanics.16 Theoretical modeling

begins with the formulation of rate equations describing the

filling of empty areas of the surface with particles. The result is

a hierarchical set of rate equations linking each empty configu-

ration to the set of empty configurations that could result from

the adsorption of a particle anywhere within it. These equations

describe a nonequilibrium generalization of the famous dimer
2422 | Soft Matter, 2010, 6, 2421–2434
problem of statistical physics,17 with dimers being replaced by

hard spheres in our case. One-dimensional RSA models as well as

CSA models with short-range cooperative effects are exactly

solvable. However, in dimensions two and higher, the hierarchy

of rate equations becomes very large and is not exactly solvable

even for the simplest short-range cooperative effects (such as

nearest-neighbor exclusion on a lattice). A variety of approxi-

mation methods such as series expansions for small coverages

(i.e. early times) and systematic truncation of the hierarchical

rate equations has been adopted to study higher dimensional

RSA/CSA models. The algorithmic nature of the SA process also

makes it a good candidate for direct numerical simulation on
This journal is ª The Royal Society of Chemistry 2010



finite-sized lattices or surfaces, which is the approach taken by

this paper.

With experimental patterns like the one depicted in Fig. 1(a) in

mind, we develop here a model of irreversible CSA of particles on

an initially empty square lattice, under the conditions that

adsorption of a particle at any site prevents further adsorption

not only at the filled site but at nearest neighbor (NN) and next-

nearest neighbor (2NN) positions, but increases the rate of

adsorption at the third (3NN) and fourth (4NN) nearest

neighbor positions. (As explained in detail in section 2.1, these

lattice positions correspond to the positions of plaquettes of the

microfiber array for the particular case of fiber clustering;

representative NN through 4NN positions relative to a 2 � 2

cluster are indicated in Fig. 2(b).) Local cooperativity in the

adsorption process is typically introduced by defining adsorption

rates that depend on the local environment of each site.16 For our

model, we assign a rate k(i, j)¼ k0aibj to each site that depends on

the numbers i and j of particles previously adsorbed at 3NN and

4NN positions respectively relative to the site. Enhancement of

adsorption near previously adsorbed particles corresponds to

k(i, j) > k(0, 0) for allowed values of (i, j) other than (0, 0). Here

k(0, 0) ^ k0 is the rate of adsorption of particles for a site that

has no filled 3NN or 4NN sites. We shall take a and b greater

than 1, so that they describe in a simple way enhanced

‘‘adsorption’’ (tetramer clustering in our case) at 3NN and 4NN

positions respectively. While the lone particle adsorption rate k0

determines the overall speed at which the surface is covered with

particles, the nature of the adsorbed pattern at any fractional

coverage and particularly at saturation depends only on a and

b which are the two adjustable parameters in the model.

Our model is similar to previously studied CSA models on

a square lattice with close-neighbor cooperative effects.16,18–21

Previous studies, however, have focused on a single level of

cooperativity with rates ki¼ aik0, a > 1 defined at each site when i

is the number of occupied closest neighbor sites. (This rate choice

is called a multiplicative or Arrhenius rate, in contrast to the Eden

rate choice, ki ¼ ak0, a > 1 for i $ 1.) Some of these analyses are

also useful in explaining the properties of our model. For

example, in the regime of strong cooperativity when adsorption

near occupied sites is strongly favored, adsorbed particles tend to

form growing domains or islands19,20 around a randomly

deposited nucleation site. Here we define a domain as a group of

tetramers whose centers may be connected to each other by

a network of bonds each of length 2a, where a is the lattice

spacing of the square array of fibers. As shown in Fig. 1, the

domains lie on one of four sublattices and domains belonging to

different sublattices meet in boundaries that largely follow the

principal axes of the lattice of fibers. Then k0 may be considered

the rate of nucleation of domains while the other rates describe

the growth of domains. As adsorption continues, growing

domains on the same sublattice coalesce upon meeting one

another, while domains belonging to different sublattices meet at

a frozen domain boundary. As long as all k(i, j) > 0, the system

ultimately reaches a ‘saturated’ or ‘jammed’ state at which point

no further adsorption can take place and the state of the entire

lattice may be described by domain boundaries separating

domains of various shapes and sizes. This saturated state is the

one that is compared to the experimental domain patterns. In the

fiber clustering experiments discussed above, rare anomalous
This journal is ª The Royal Society of Chemistry 2010
clusters of 2, 3, 5, 6,. fibers constitute additional point-like

defects which we disregard here.

In section 2, we summarize the experiments leading to the self-

organization of microfibers and motivate the CSA model with

NN/2NN exclusion and 3NN/4NN cooperative effects to

describe ordering and domain formation in this system. In

section 3, we characterize the patterns of tetramers generated by

the model for a range of parameter values using computer

simulations. We emphasize the effects of the newly considered

4NN cooperativity (b > 1) to contrast the current model with

previously studied single-parameter models, and highlight the

similarity of the tetramer-tetramer correlation functions for

different values of a and b upon appropriate rescaling. In section

4, we evaluate the ability of the model to reproduce patterns from

an actual experiment, using a single measured quantity to fit the

two parameters a and b, and compare the model’s performance

to that of a similar single-parameter model. We show that

a single-parameter model deviates significantly from the experi-

mental observations, while our new double-parameter model

provides an excellent description of the experimentally observed

patterns. In section 5, we conclude by using the insights provided

by the model to improve ordering in the clustering experiment,

and consider the potential relevance of the new model to various

sequential adsorption processes and self-assembly. Details of the

numerical simulation and the experimental procedure are

reported in appendices A and B respectively.
2. Microfiber clustering and order formation

The formation of large ordered regions during self-organization

of nanostructures via capillary forces has been reported by the

Aizenberg group in ref. 12. In this section we summarize the

experiment and observations that motivate our theory. Highly

uniform square arrays of high-aspect-ratio nano- and microscale

polymeric fibers, prepared using soft lithography as described in

ref. 22, were wet with a solvent which was allowed to evaporate

under ambient conditions. As the solvent-air interface is forced

below the tips of the upright fibers due to evaporation, the tips

are drawn together by capillary interactions and adhere to each

other upon contact via short-range van der Waals forces, forming

clusters that persist after all the liquid has evaporated and may be

observed by optical and scanning electron microscopy. Under

certain conditions of fiber geometry and stiffness, the clusters

formed could be primarily tetramers composed of four fibers

meeting at the tips. The tetramers were arranged in highly regular

arrays, with large domains (spanning several lattice lengths)

composed of groups of tetramers ordered in a square superlattice

of lattice constant twice the distance between fibers. A repre-

sentative SEM image of such a system after clustering is shown in

Fig. 1(a).
2.1 Ordering mechanism and formulation of the CSA model

A qualitative one-dimensional mechanism for the formation of

ordered domains has been proposed12 that propagates

a breaking of the lattice symmetry into one sublattice due to

the nature of the attractive capillary forces between fiber tips.

For small displacements of the meniscus from the horizontal

plane, the capillary forces are proportional to gr2/d, where g is
Soft Matter, 2010, 6, 2421–2434 | 2423



the surface tension of the ethanol-air interface, r the radius of

the fibers and d the distance between fiber tips at the

meniscus.23 The cooperativity in cluster formation arises as

a result of the inverse relationship between interfiber distance

d and capillary force between fiber tips. Fig. 2(a) illustrates this

mechanism. If a dimer nucleates due to an imperfection or

instability (such as a nonuniformity in the rate of evaporation

of the ethanol, or slight variations in the spacing of the fiber

tips when they encounter the ethanol-air interface), that event

induces a fiber to buckle or bend, and the fiber to the right of

the dimer then experiences a net force towards its own neighbor

on its right which is closer to it than the fiber participating in

the dimer on its left. Thus, the initial dimerization induces the

fiber to form a new dimer with the fiber on its right. This

cascade then continues, propagating a chain of dimers with

periodicity 2a. To extend this picture to two dimensions, note

that the formation of a tetramer has the biggest effect on four

pairs of neighboring fibers in the four cardinal directions. For

instance, consider the highlighted pair of fibers in Fig. 2(b).

Due to the force imbalance induced by the initial tetramer, the

pair moves toward the fibers to its north, increasing the

probability of forming a tetramer in position ‘A’ which is

a third-nearest-neighbor, or 3NN, position relative to the

formed tetramer. However, each destabilized fiber also has an

enhanced probability of forming a tetramers at the two posi-

tions marked ‘B’, the 4NN positions relative to the formed

tetramer. Hence the effect of the formed tetramer on the fibers

closest to it is fully captured if we include both 3NN and 4NN

enhancement in tetramer formation. We would expect the effect

to be weaker for 4NN tetramers, but to increase when the

number of 3NN or 4NN neighbors is increased as more fibers

are perturbed by force imbalances. (Note that tetramers cannot

form at NN or 2NN positions due to a lack of a complete set

of four upright fibers. Also, the absence in the experimental

patterns of adjacent pairs of dimers suggests that any dimer

formed near an initial tetramer immediately forms a more

stable tetramer configuration with the next pair of fibers if it is

available, giving rise to a 3NN or 4NN cluster. Hence we do

not include the possibility of dimer formation induced by

a tetramer in neighboring fibers.)

Thus the formation of ordered domains occurs in the following

way: random instabilities nucleate lone tetramers in the lattice of

initially upright fibers at some background rate. Once a tetramer

is formed, the nature of capillary interactions enhances the rate

at which tetramers are formed at 3NN and 4NN positions near it.

The 3NN enhancement tends to be stronger, giving rise to the

formation of ordered domains of tetramers that grow from

different nucleating sites. Nucleation of a 4NN tetramer at the

edge of a growing domain disrupts its growth, instead starting

a domain belonging to a different sublattice. Once tetramers are

formed, they do not unbind.

Note that formation of tetramers on the square lattice of

fibers is equivalent to the deposition of single particles on sites

of the dual square lattice (which is the lattice formed from the

centers of the plaquettes formed by the fiber lattice, or equi-

valently the fiber lattice displaced by a/2 in both the x and y

directions). Hence the irreversible process of tetramer formation

as described above is equivalent to a cooperative sequential

adsorption process of particles that occupy sites on a square
2424 | Soft Matter, 2010, 6, 2421–2434
lattice with NN/2NN exclusion and 3NN/4NN enhancement of

deposition. The initial state of upright fibers (no tetramers) is

equivalent to an empty initial lattice for particle deposition. The

rate of deposition at each site at any instant in time is deter-

mined by the previously deposited particles (if any) at 3NN and

4NN positions, or is equal to the rate of random or bare

nucleation if there are no such deposited neighbors. The final

state after all the ethanol has evaporated, when all fibers are

clustered except those that do not have enough neighbors to

form tetramers, corresponds to a state of jamming or saturation

for adsorption on the dual lattice.
2.2 Choice of CSA model rates

To complete our model, we must specify the local-environment-

dependent rate of adsorption of tetramers at empty sites. The

transformation of a group of four upright fibers to a tetramer

happens in less than a hundredth of a second,24 practically

instantaneous over the time scale of the clustering of the entire

sample (roughly a minute). We assume that the formation of

a tetramer at a particular site on the (dual) lattice is a stochastic

process with a waiting time that is exponentially distributed with

a mean time s, which depends on the geometry of the fibers, the

surface and bulk properties of the fiber material, the surface

tension of the evaporating liquid and the level of the ethanol-air

interface, as well as the configuration of fibers and/or tetramers

at nearby positions. The rate of formation (adsorption) at the

particular site is then 1/s. We do not attempt to calculate these

rates microscopically for different local environments but treat

them as parameters that we extract from a particular experi-

mental realization by fitting to simulation results.

Even if we restrict ourselves to 3NN/4NN effects of previously

formed tetramers, there are several different rates of adsorption

to an empty site based on different possible configurations of

previously adsorbed tetramers around it. For instance, there are

five different configurations involving one, two, three or four

tetramers adsorbed at 3NN sites that are not superimposable via

rotations, and several more independent configurations when

considering all possible combinations of adsorbed 3NN/4NN

tetramers allowed under the exclusion rule. To reduce the

number of independent parameters in the model, we make the

simplifying assumption that the adsorption rate k(i, j) at any site

is a function only of the number of tetramers adsorbed at 3NN

and 4NN positions (i and j respectively) and not their spatial

arrangement around the site.

The functional dependence of the rate on i and j (which, of

course, take only non-negative integer values) is motivated by the

observation of long unbroken domain walls along both lattice

directions, which suggests that individual domains growing from

different nucleation sites are largely rectangular in shape when

they encounter one another. Let us focus initially on the stronger

3NN cooperativity, ignoring any dependence of the rates on j so

that k(i, j) ^ ki. Then k0, k1 and k2 represent respectively the

rates of nucleation of a new domain, beginning of a new row at

the edge of a growing domain, and growth of an incomplete row

at the edge of a domain by formation of a tetramer at either end

of the row. The ratio k1/k0 determines the average size to which

domains grow before they encounter other domains and stop,

while k2/k1 determines the size until which a growing domain
This journal is ª The Royal Society of Chemistry 2010



remains rectangular.† Evans and Nord21 have shown that

multiplicative rates that satisfy k0:k1:k2 ¼ 1:a:a2 with a > 1 give

rise to domains that maintain their rectangular shape until

saturation is reached in the adsorption process. In contrast,

a weaker arithmetic increase in cooperativity with i such as

k0:k1:k2 ¼ 1:a:2a would lead to patterns with irregular domain

walls as domains do not maintain their rectangular shape.

Motivated by these observations and the experiments them-

selves, we choose multiplicative rates that independently grow

with i and j: k(i, j) ¼ k0aibj, where a and b are the cooperativity

parameters associated with 3NN and 4NN tetramers respec-

tively. This simplified form has several advantages: it reduces the

number of parameters to two while retaining the desired prop-

erties of two cooperativity levels, cooperativity that increases

with number of adsorbed neighbors, and support for rectangular

domains; the levels of 3NN and 4NN cooperativity may be

independently varied; and the similarity with (one-parameter)

multiplicative rates allows a comparison with models that have

been previously studied. We do not propose that the actual

microscopic rates in experiment follow this choice of rates, but

rather that this simplified choice reflects the local environment

dependence of the actual rates sufficiently well to recreate key

features of the patterns seen in experiment — particularly the

relative influence of 3NN and 4NN cooperativity. As we shall

see, a large number of experimental features can be understood

upon adjusting just these two parameters.
Fig. 3 The dependence of saturation coverage, q*, on cooperativity

parameters a and b in the CSA model (simulation). The top figure

highlights the a-dependence when b is kept constant and vice versa on the

bottom. The lines are guides to the eye.
3. Simulation results

We study the proposed CSA model using Monte Carlo simula-

tions, described in brief in Appendix A. The simulations were

carried out on 400 � 400 lattices, with results averaged across

100 runs for each (a, b) combination.
‡ The asymptotic size of a single growing domain in an otherwise empty
lattice is circular for Arrhenius-type rates. However, at its initial stages of
growth the domain is rectangular since rows fill up quickly for Arrhenius

21
3.1 Mean coverage at saturation

The coverage q at any point during the adsorption process is the

fraction of filled sites. The saturation coverage q* is the coverage

when no further particles can adsorb. The maximum possible

coverage is achieved when the entire lattice consists of one single

domain, in which case q* ¼ 1/4 (the NN and 2NN exclusion

allows at most a fourth of the dual lattice to be covered in

tetramers, all on one sublattice).

The saturation coverage is expected to increase with the

cooperativity, because deviations from the maximum possible

value occur only when domains with different nucleating sites

coalesce. A higher rate of tetramer formation near previously

formed tetramers (compared to nucleation of lone tetramers)

ensures that the dual lattice is filled with fewer domain walls; i.e.

higher values of a and b give rise to higher values of saturation

coverage, as seen in Fig. 3.
† The time taken to complete an edge on a rectangular domain with edge
length m is tc�m/k2; in that time, the rectangular shape would be spoiled
if a new edge is begun before the whole string of m tetramers is added to
complete the growing edge. This happens�mk1tc z m2k1/k2 times; hence
the rectangular shape of the domain can be maintained only for
m2k1/k2(1 i.e. m(

ffiffiffiffiffiffiffiffiffiffiffiffi
k2=k1

p
. Discussed in ref. 21.
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3.2 Domain sizes, chord lengths and domain wall densities

We have already defined domains as groups of particles (i.e.

tetramers) connected to each other by a network of 3NN bonds.

Domains belonging to different sublattices meet in domain walls

that also run along the principal lattice directions. As Fig. 4(a–c)

shows, there are two types of boundaries between domains that

occur at saturation: boundaries involving free-standing single

fibers that do not have enough neighbors to form tetramers

(Type I) and boundaries that do not have such freely standing

fibers (Type II). As a result of the CSA process, patterns with

several domains meeting in boundaries of either type that

primarily follow the principal directions of the lattice are

generated (Fig. 5). ‘‘Zig-zag’’ domain walls that follow diagonal

directions in the lattice are rare because of the Arrhenius choice

of rates.‡
rates. If we ignore 4NN cooperativity for the moment, Evans and Nord
have shown that growing domains retain their rectangular size up to
a linear size of order a1/2 which also turns out to be the typical size
a domain grows before it encounters another domain that nucleated
independently. Thus domains do not attain their asymptotic shape but
remain largely rectangular in the saturated state. As we shall see, the
4NN cooperativity tends to make domains even smaller and thus
preserves their primarily rectangular shapes. See also footnote †.

Soft Matter, 2010, 6, 2421–2434 | 2425



Fig. 5 A typical result of the CSA process run to saturation has

a mixture of Type I and Type II domains in both the horizontal and

vertical directions. ‘‘Zig-zag’’ walls are occasionally seen which may be

considered a combination of horizontal and vertical sections.

Fig. 4 Domain walls between tetramer domains. (a) and (b) depict Type

I domain walls that leave behind upright fibers (depicted by dots) which

are not part of any cluster. On the dual lattice, two empty vertical rows

separate the domains. The domain on the left in (a) belongs to sublattice 1

(if numbering begins from the top left as in Fig. 1(b)) while the domain on

the right belongs to sublattice 2. In (b), the domain boundary is between

domains on sublattice 1 and sublattice 3. (c) depicts a vertical Type II

domain wall (dashed line) that does not leave behind any unclustered

fibers. The domains are separated by only one row of empty sites on the

dual lattice. The boundary is between a domain on sublattice 1 and one

on sublattice 4. There are, of course, horizontal analogs of all three types

of wall.

Fig. 6 Dependence of average domain size sav on cooperativity

parameters a and b in the CSA model (simulation).
Once the different domains in the simulation result and the

domain boundaries between them have been identified,

ensemble-averaged measures of the domain size and the domain

boundary lengths may be obtained. For a given simulation run, if

ns is the number of domains with s particles in them, we define the

average domain size sav ¼
P

sns/
P

ns. We also consider the

statistics of adsorbed particles on a row-by-row or column-by-

column basis. Defining a chord as a contiguous string of particles

connected by 3NN bonds in the vertical or horizontal direction

of the lattice, we may also measure the average chord length

mav ¼
P

mnm/
P

nm where nm is the number of chords of length

m. These are all measures of domain size that have been used in

previous studies.16,20

We also define the domain wall densities r1 and r2 of Type I

and Type II domain boundaries respectively as the total length

(in lattice units) of each domain wall type at saturation divided

by the number of fibers in the lattice. Zig-zag domain walls are

broken up into vertical and horizontal sections which contribute

to the domain wall densities as well.

Fig. 6, 7, 8 and 9 summarize the dependence of these measured

quantities on a and b. The effects of the two levels of
2426 | Soft Matter, 2010, 6, 2421–2434
cooperativity considered are different on the measures of domain

size. Consider an already adsorbed particle M at the edge of

a growing domain. The 3NN cooperativity enhances the

adsorption of particles that belong to the same domain as M.

Hence increased 3NN cooperativity, quantified by a larger value

of a, corresponds to larger domains. In contrast, the effect of

4NN cooperativity is to enhance the rate of formation of parti-

cles that belong to a different sublattice than that occupied by M.

This disrupts the growth of the domain by effectively nucleating

a new domain on a different sublattice, giving rise to a Type II

domain boundary shown in Fig. 4(c). Hence increasing the level

of 4NN cooperativity, b, gives rise to smaller domains. This is

seen in the measures of average domain size and average chord

length from simulation, Fig. 6 and 7. From this argument,

increasing b should also increase the density of Type II domain

walls, as confirmed in Fig. 9. The density of Type I domain walls

is essentially the density of unclustered fibers and thus closely

related to the saturation coverage (increased q* should corres-

pond to a fall in r1 as fewer unclustered fibers are left at satu-

ration). Hence increasing a and b both have the effect of reducing

r1 (Fig. 8).

A useful consequence of the competing influence of 3NN and

4NN cooperativity on domain size is that the parameters may be

varied in tandem to increase the coverage at saturation without

simultaneously increasing the average domain size. In previously

studied models of cooperative sequential adsorption that include

only one level of cooperativity (typically NN enhancement or

NN exclusion and 2NN enhancement19,20), increasing the rate of
This journal is ª The Royal Society of Chemistry 2010



Fig. 7 Dependence of average chord length mav on cooperativity

parameters a and b in the CSA model (simulation). Note the qualitatively

different trends.

Fig. 8 Dependence of Type I domain wall density r1 on cooperativity

parameters a and b in the CSA model (simulation).
cooperative adsorption increases both the saturation coverage

and the size of domains. In contrast, if the system exhibits

cooperativity that induces adsorption of particles on a different

sublattice as in the current model, then increasing this rate (b in

the current model) increases the saturation coverage q* while

decreasing the measures of domain size, sav and mav.
3.3 Pair correlations

We define spatial pair correlations at saturation as C(x, y) ¼
P(x, y) � q*2, where P(x, y) is the probability that a pair of sites

separated by the vector (x, y) in lattice units is occupied. Here we

analyze correlations purely in the x direction, C(x, 0), averaged

over several simulation runs. The average x and y direction

correlations are equal by symmetry. The correlation C(x, 0) is

positive for even values of the lattice separation x and negative

for odd values as a consequence of nearest-neighbor exclusion in

the tetramer model. For instance, C(1, 0)¼�q*2 since P(1, 0)¼ 0.

3.3.1 Dependence on 3NN cooperativity. At first we set b to 1

(no 4NN cooperativity) and vary a. The system is then very

similar to the C(2 � 2) adsorption model with NN exclusion

and 2NN cooperativity with Arrhenius rates studied by Evans

and co-workers20,21 for which scaling arguments were developed

by the authors using semi-deterministic domain growth models.

For large a, the adsorption process resembles a deterministic
This journal is ª The Royal Society of Chemistry 2010
nucleation and growth process in which new domains are

nucleated with a rate k0 per empty site, following which rec-

tangular domains grow at a size-dependent rate ak0m where m

is the number of adsorbed particles on a growing edge of the

domain. (When a [ 1, the time taken for a complete row to

be added to the edge of a growing domain, � m/(a2k0), is much

smaller than the time taken for the new row to be initiated at

that edge which is roughly 1/(mak0). The latter is thus the rate-

determining step for domain growth.) If fluctuations and edge

roughening are ignored, the only relevant quantity is the ratio

of the rates of domain nucleation to domain growth. Hence

patterns generated by different values of a should be self-

similar if they are rescaled by a characteristic length x that gives

rise to the same nucleation to growth rate ratio for all of them.

For Arrhenius rates in the limit of large a in two dimensions,

this length has been shown to scale as x � O(a1/2) (ref. 21). At

high values of a, the average linear dimension of the domains

and the chord length mav are expected to scale in the same

fashion.

A consequence of the length scale set by the strong coopera-

tivity is that the spatial correlations should display universal

scaling on length scales O(x) for large values of a. On length

scales larger than the characteristic length, a crossover to the

superexponential decay characteristic of random sequential

adsorption processes is expected.20,25 Such behavior is indeed

seen in Fig. 10.
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Fig. 10 Pair correlation C(l, 0) for different values of a plotted against

the rescaled separation l/mav(a). In all cases, b ¼ 1. mav(a) is taken from

data similar to that reported in Fig. 7 with b ¼ 1. For a > 20 the scaled

correlations follow a universal form. The inset, which plots the absolute

value of the pair correlation on a log-linear scale, shows the loss of scaling

at large separations.

Fig. 11 Pair correlation C(l, 0) for a ¼ 100 and different values of

b against separation l in lattice units.

Fig. 12 Pair correlation C(l, 0) for different values of (a, b) chosen such

that a/b2 ¼ 2 in all cases. The scaling length ls(a, b) was chosen for each

value of (a, b) to obtain the best data collapse. Inset: |C(l, 0)| against l/ls
on a log-linear scale.

Fig. 9 Dependence of Type II domain wall density r2 on cooperativity

parameters a and b in the CSA model (simulation).
3.3.2 Dependence on 4NN cooperativity. The effect of varying

b while keeping the value of a constant is shown in Fig. 11. As

b is increased, the positive-valued part of the correlation function

(C(l ¼ 2n, 0) where n is an integer) falls. This is a result of the

increased propensity for Type II domain walls to form, which

break up contiguous strings of adsorbed particles on the same
2428 | Soft Matter, 2010, 6, 2421–2434
sublattice in the x direction (see Fig. 4(c)). On the other hand, the

negative-valued part (C(l ¼ 2n + 1, 0)) becomes more negative,

because a particle in the domain on the left of Fig. 4(c) continues

to have vacancies at positions that are odd numbers of lattice

displacements along the same row into the new domain on the

right.

The pair correlations in Fig. 11 cannot be made to overlap by

rescaling the horizontal axis. (For instance, if we rescaled the l

axis to make the positive-valued parts of C(l, 0) overlap for b¼ 1

and b ¼ 8, we can see from the figure that the negative-valued

parts of the curves would be pushed even further away compared

to the unscaled functions.) The simple scaling of correlations

seen when b was set to 1 has been lost. In the former case, scaling

was justified by considering a deterministic domain nucleation

and growth process where the ratio of the rates of domain

nucleation to growth set the characteristic length scale. When

4NN cooperativity is also included, the deterministic process is

modified as follows: nucleation still happens at a rate k0 per

empty lattice site, and rows continue to be added to the straight

edge of a growing domain at a rate mak0 where m is the number

of particles at the edge. However, domain growth (where a row is

added to the same sublattice as the domain) now competes with
This journal is ª The Royal Society of Chemistry 2010



the formation of a new domain on the sublattice displaced by one

lattice step in either direction perpendicular to the growing edge,

which happens at a rate � mb2k0. The deterministic process thus

depends on two rate ratios: the ratio of domain nucleation to

growth, which is domain size dependent but controlled by a, and

the ratio of domain growth to formation of a new domain at the

growing edge, which equals a/b2 for all sizes of domains.

The pair correlations do not scale as before because it is not

possible to find a single characteristic length for rescaling that

sets both rate ratios to be equal for patterns with different values

of a and b. However, we expect that patterns with the same value

of the ratio a/b2 may be made self-similar by the appropriate

rescaling that sets the nucleation-growth ratio to be uniform.

This is confirmed in Fig. 12 where pair correlations for different

values of (a, b) but the same value of a/b2 have the same form

upon appropriate rescaling of the horizontal axis. Note that for

each of the values of a, a different value of b would not give

a pair correlation that could be collapsed onto the same curves.

As before, the conclusions drawn from the deterministic model

are appropriate only for large values of a where the domain

nucleation and growth picture is not completely obscured by

fluctuations due to the stochastic nature of the sequential

adsorption model.

From the above discussion, we also see that the ratio a/b2

quantifies the relative influence of the 3NN and 4NN coopera-

tivity on domain sizes. If a/b2�1, the 4NN cooperativity
Fig. 13 Intensity plots of diffraction patterns from simulations for different

shown but the x and y axes have been offset to reveal the shapes of the diffract

to zero to emphasize the features near the edges. There is no 4NN cooperati

This journal is ª The Royal Society of Chemistry 2010
dominates, disrupting domain growth completely even for large

a because it would be much more likely for a new row of tetra-

mers to form on a shifted sublattice than on the same sublattice

as a previously formed row. In that situation one would not

observe large ordered domains at all, but rather see regions of

staggered parallel rows of tetramers on alternating sublattices.

The case of a/b2�1 is not relevant to the microfiber clustering

system (for which domains extending over a few lattice lengths in

either direction are always observed, indicating that 3NN

cooperativity is dominant) and is not considered here.
3.4 Diffracted intensity

Although one does not typically diffract matter or light waves

from the tetramer patterns studied here, Fourier analysis

nevertheless provides a powerful tool for uncovering subtle

patterns underlying tetramer formation. We define the diffracted

intensity of the dual lattice of tetramers at a wavevector q as

IðqÞ ¼
�����
X

x;y

e�iðqxxþqyyÞnðx; yÞ
�����

2

(1)

where qx, qy ˛ (– p, p), n(x, y) is the occupation number (0 or 1)

of the lattice position (x, y) and the sum runs over all lattice

positions. This quantity is closely related to the diffracted

intensity for scattering from the actual pattern of tetramers; it is
values of a. Since the pattern is fourfold symmetric, only one quadrant is

ion spots. The square region�p/5 < qx, qy < p/5 (dotted line) has been set

vity; i.e. b ¼ 1 in all cases.
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Fig. 14 Intensity plots, similar to Fig. 13, of diffraction patterns from simulations for different values of b. In all cases, a ¼ 20.

x The width of a diffraction peak in either direction is inversely
proportional to the correlation length of the pair correlation in that
direction. The domain wall reduces pair correlations in the x direction
(by dephasing rows of adsorbed particles that extended across the
entire lattice) but not in the y direction, hence affecting the peak width
along qx but not qy.
the pattern that would be obtained if every tetramer in the

pattern were replaced by a delta function scatterer at its center

(similar to the structure factor for scattering from a collection of

identical atoms). It provides information about the degree of

order in the system and the types of domains and domain

boundaries that are present.

In practice, the results of simulations and the experimental

measurements are discrete arrays of size N � N. In this case we

calculate the diffracted intensity via a discrete Fourier transform

of the array n(x, y) of occupation numbers. The resulting array

provides an estimate of I(qx, qy) for qx, qy taking on discrete

values 2pn/N where n takes on integer values between �N/2 and

N/2. Averaging the calculated patterns from several realizations

of a finite-sized simulation of tetramer deposition at a particular

(a, b) provides a diffraction pattern representative of that set of

parameters.

A single domain is a square array of particles with a super-

lattice spacing of twice the underlying lattice. The diffraction

pattern of an infinite domain consists of delta function peaks at q

¼ � (p, 0), � (0, p), � (p, p), � (p, � p), etc., i.e. the reciprocal

lattice of the square superlattice of particles, in addition to the

origin. At finite cooperativity, finite-sized domains on different

sublattices interfere to broaden these peaks in specific ways. To

understand this, suppose we start with an infinite domain and

create a Type II domain wall running along the y direction by

shifting all the particles to the right of the origin up by one lattice

position. The x coordinates of all occupied sites remain the same
2430 | Soft Matter, 2010, 6, 2421–2434
in the sum in eqn (1); hence the peaks at q ¼ (� p, 0) are

unaffected but the peaks at nonzero values of qy broaden in the

qx direction.x Analogously, Type II domain walls in the x

direction broaden the peaks with qx s 0 in the qy direction. Type

I domain walls have an effect of either diminishing the strength of

peaks or broadening them perpendicular to their non-zero

momentum direction.

Increasing a while setting b¼ 1 constant (Fig. 13) sharpens the

principal reciprocal lattice peaks by reducing domain wall

densities, allowing large domains to dominate the diffraction

pattern. At a constant value of a, increasing the value of

b (Fig. 14) increases Type II domain wall densities exclusively,

thus broadening the peaks at (0, � p) and (� p, 0) perpendicular

to the non-zero momentum and diminishing the peaks at (� p,�
p).
4. Experimental results

To test our theoretical ideas, we conducted clustering experi-

ments on a sample of size 2 cm � 1 cm, with fibers of height

10 mm and diameter 1.8 mm arranged in a square array with
This journal is ª The Royal Society of Chemistry 2010



lattice constant 3.5 mm (Sample I). Experimental details are in

Appendix B. Optical microscope images were taken of a 182 �
182 fiber area at a time, and a pattern recognition program

written in MATLAB� (MathWorks, Inc.) was used to identify

the positions of the formed tetramers on the dual lattice. Thus

a 182 � 182 lattice of empty and filled sites was obtained from

each image, the filled sites being the ones at which a tetramer was

observed. From these lattices, relevant measures such as the

coverage, domain sizes and chord lengths could be measured

which correspond exactly to the quantities measured from the

CSA model simulations. We imaged 43 non-overlapping regions,

and calculated pattern statistics for each lattice. Here we report

quantitites averaged across the 43 regions, and the corresponding

standard error of this average is used as the error estimate.{
In the experiment, we also see clusters that do not strictly

consist of four fibers, such as hexamers (3� 2 clusters). These are

primarily seen at the boundaries between ordered domains

belonging to different sublattices. We interpret these clusters in

the context of the tetramer adsorption model as follows: the

ethanol-air interface is pinned to the tips of the fibers even as the

level of the ethanol-air interface recedes below the height of

the fibers. The capillary forces between fiber tips are a result of

this pinning which perturbs the interface, and they increase as the

height difference between fiber tips and interface increases.23

These capillary forces compete with the elastic forces involved

with bending the fibers so that their tips touch to form clusters.

When the level of the ethanol-air interface is such that capillary

forces are strong enough to induce tetramer clustering, tetramer

formation begins and proceeds until saturation; larger cluster

formation does not happen because fiber tips need to be dis-

placed by larger distances, and higher capillary forces are needed

to overcome the corresponding elastic forces. If the evaporation

were stopped at this stage a pattern consisting only of tetramers
Fig. 15 A section of an experimental image (left) compared to its

interpretation in terms of tetramers on a lattice (right) within the

framework of our model. Notice especially that the hexamer (3 � 2)

clusters, indicated by solid arrows, have been interpreted as being parts of

a continuous Type I domain boundary. Similarly, dimers that form along

another Type I boundary, indicated by dashed arrows, are interpreted as

a row of lone fibers.

{ The standard error, s ¼ s=
ffiffiffi
n
p

where s is the estimate of the standard
deviation of the measured quantity and n is the number of
measurements taken, is a valid estimate of the error associated with
measuring a mean quantity, as long as the individual measurements are
made from the same statistical distribution with a uniform value of s.
In practice, slight nonuniformities in the sample, as well as spatial
irregularities in the evaporation rate of ethanol, are likely to make the
cooperativity levels in each of the 43 regions slightly different from one
another; i.e. the measurements made in each region belong to slightly
different statistical distributions. This variation is not reflected in the
standard error which is thus likely to underestimate the true errors in
the measured quantities.
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and upright (unclustered) fibers would be observed. However, in

the actual experiments, ethanol evaporation continues until the

capillary forces become strong enough to draw some of the

remaining lone fibers toward their neighbors to form dimers

(clusters of two adjacent pillars), hexamers and larger sized

clusters. Thus we interpret these clusters as a combination of

tetramers and lone fibers when we convert the experimental

images into lattice occupancy data. To be consistent with this

interpretation, we translate a row of hexamers in the experiment

as a row of tetramers next to a row of unclustered fibers

(rather than randomly assigning a tetramer to one of the two

positions it could occupy in each hexamer) because such a row is

most likely to have arisen at the site of a continuous Type I

domain wall which we recreate in the lattice data. Fig. 15 shows an

example of translating an experimental pattern into lattice data.

The method of fitting the experimental results to the simula-

tions is as follows: the two-dimensional diffracted intensity

defined in eqn (1) condenses ensemble-wide properties of the

generated patterns into a two-dimensional array of numbers. We

thus compare the averaged diffracted intensity from the experi-

ment to that from the simulations, choosing a and b that best fit
Fig. 16 Least-squares fitting of the experimental result to simulations.

Each line shows the RMS value of the difference in observed and simu-

lated diffraction intensity (averaged across the two-dimensional array)

for a particular value of a while varying b. On the top, the smallest value

of the RMS deviation decreases and then increases upon varying a over

a large range, suggesting that a unique minimum can be found in the

vicinity of a¼ 50, b¼ 3. On the bottom, more refined parameters a¼ 48,

b ¼ 2.7 are seen to provide the best fit with a precision of � 1 in a and

� 0.1 in b.
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Table 1 Comparison of measured quantities from Sample I with aver-
aged statistics of the two-parameter and the one-parameter CSA models
with parameters picked by least-squares fitting of the diffraction pattern
with experiment. The simulation results are averaged over 100 instances
of a 400 � 400 lattice and the standard error associated with this average
is smaller than the most significant digit reported.

Quantity Experiment
Two-parameter CSA One-parameter CSA
a ¼ 48, b ¼ 2.7 a ¼ 41

q* 0.2258 � 0.0004 0.2253 0.2213
sav 20.6 � 0.5 23.2 29.1
mav 4.0 � 0.1 4.12 4.84
r1 0.099 � 0.002 0.099 0.115
r2 0.111 � 0.002 0.105 0.057

Fig. 17 Comparison between the measured pair correlation of Sample I

to the pair correlation function of the CSA model with a ¼ 48, b ¼ 2.7.

Inset: Absolute value of the pair correlations on a log-linear scale.
the experimental diffraction pattern. The parameters are chosen

that minimize the root mean square deviation of the diffracted

intensity, weighted by the inverse of the experimental error esti-

mate at each (qx, qy). As Fig. 16 shows, such a minimum value

may be extracted from the data to a reasonable precision. For our

experimental measurements, we obtain a¼ 48� 1, b¼ 2.7� 0.1.

Table 1 shows a comparison between experiment (second

column) and the CSA model simulation for the optimized a and

b values described above (third column). The measured average

values of the different pattern statistics introduced previously

appear to be in reasonable agreement. Fig. 17 compares the

calculated pair correlation function from the experiment to that

of the CSA model with the chosen fit parameters, again showing

reasonable agreement.

We can also compare the performance of the extended CSA

model to a one-parameter model with only 3NN cooperativity

and Arrhenius rates ki ¼ k0ai for an empty site with i occupied

sites at third nearest neighbor positions (this is equivalent to the

two-parameter model with b set to 1). Statistics for the best fit

obtained for a in the one-parameter model have also been

reported in Table 1 (fourth column), showing that the two

parameter model performs significantly better. In particular, the

absence of 4NN cooperativity leads the one-parameter model to

greatly underestimate r2, the density of Type II domain

boundaries which are induced by the 4NN cooperativity

mechanism. The high value of r2 in the experiment confirms
2432 | Soft Matter, 2010, 6, 2421–2434
that the 4NN cooperativity mechanism is important in tetramer

formation.
5. Conclusion

We have proposed a lattice sequential adsorption model of

ordered tetramer clusters of microfibers driven by capillary

forces. The newly introduced further-neighbor cooperativity

allows independent variation of lattice coverage and average

domain size: unlike previously studied cooperative sequential

adsorption models, the present model allows the saturation

lattice coverage to be increased without correspondingly raising

the average domain size. This independence arises because the

model admits additional domain boundaries that do not include

unoccupied sites.

With a plausible model for ordered cluster formation as judged

by the comparison of the theory to experiment, we may ask how

to improve ordering in the capillary-assisted self-organization

process. Clearly, increasing the rate of cooperative domain

growth relative to random domain nucleation gives rise to larger

ordered domains. A low level of the ethanol-air interface relative

to the height of the fiber tips increases the downward as well as

inter-fiber-tip capillary forces, which would induce more random

nucleation events. If we control the evaporation of the ethanol

(for instance, by controlling the ambient vapor pressure of

ethanol) in such a way that the interface spends a longer time at

a height that induces few tetramers to form on their own, then

clustering is more likely to be triggered among fibers destabilized

by the formation of clusters nearby than by the effect of the

capillary forces on upright fibers. Thus the rate of bare nucle-

ation of domains is reduced relative to their growth rate, and

larger ordered domains could be produced.

The 4NN cooperativity is also a factor that leads to smaller

domains. Indeed, even if domain growth arises from a single

nucleation site and further isolated single-site nucleation is

suppressed, there is always a chance that a domain belonging to

a different sublattice begins somewhere along the growing

edges of the domain as long as the 4NN cooperativity is

significant. A second alternative to create uniform domains is

to create artificial domain nucleation sites (say, by weakening

or bending individual fibers as has been demonstrated in ref.

22) in a regular square array with each nucleation site created

on the same sublattice and the spacing between nucleation sites

smaller than the typical domain size observed in an uncon-

trolled clustering experiment. This strategy would enhance

domains on the same sublattice and allow commensurate

coalescence before random single-site nucleation or 4NN

cooperativity-induced nucleation could initialize a domain

belonging to a different sublattice.

A similar effect can be recreated along one dimension by

imposing clustering dynamics at a front that sweeps across the

sample in one direction rather than allowing random nucleation

and bidirectional domain growth everywhere in the sample, as

has been previously recognized in ref. 13. This bias can be ach-

ieved, for instance, by performing the clustering on a tilted

sample. Due to the effect of gravity, the wetting layer retreats in

one direction as the ethanol evaporates, and at any moment

clustering happens only in a few horizontal rows near the

retreating edge where the wetting layer is at its thinnest. Domain
This journal is ª The Royal Society of Chemistry 2010



Fig. 18 Single simulation result for (left) CSA with a¼ 40, b¼ 2 (left) compared with (right) a simulation with the same parameters in which clustering

happens only in a strip three rows wide that is swept across the lattice from top to bottom to mimic the effect of an evaporation front (see text). There are

far fewer domain boundaries in the row-by-row simulation on the right, and they tend to lie along the vertical axis.
growth along the horizontal strip happens very quickly under

3NN cooperativity, following which the domain edge acts as

a template for clustering in the next unclustered row. This leads

to extended domains in the direction of propagation of the

clustering front (top to bottom), while in the perpendicular

(horizontal) direction domains are broken up by 4NN coopera-

tivity and random nucleation. A pattern resulting from a simu-

lation of such a mechanism is shown in Fig. 18.

Finally we remark that this work could be relevant to future

studies of various self-organization processes as well as sequen-

tial adsorption. For example, this model could be used to

describe nonequilibrium adsorption of a molecule/complex/

particle/DNA tile that has a square/cross symmetry with the

neighboring corners/ligands/arms possessing either opposite

charge, or A,B,A,B recognition sites. Then the attachment of the

next particle is mostly enhanced at the NN position where

a bidentate junction is formed, but it will be also enhanced (but

to a lesser degree) at the 2NN position where a monodentate

junction is formed. Again, we arrive at double-level cooperativity

in adsorption. The difference is that there will be no NN/2NN

exclusion, but instead NN/2NN enhancement; otherwise, the

model is largely the same. Abstraction of complex processes to

lattice-type models that do not focus on microscopic details has

been used with success to describe self-assembly of nano-

particles26 and vesicle formation27 among other processes; here

we use an out-of-equilibrium lattice process to study a microscale

self-organization process. The two-parameter sequential

adsorption model we have developed could be relevant to more

‘traditional’ sequential adsorption processes of gas molecules on

metal surfaces where further neighbor interactions are signifi-

cant, and also to other irreversible processes that are not

adsorption processes in the strict sense but nevertheless may be

illuminated using such models.
A. Details of numerical simulation

The CSA process was simulated in a program written in the

C++ programming language. For each realization of the

adsorption process for a particular set of (a, b) values, a two-

dimensional binary state array (0 ^ ‘‘empty’’; 1 ^ ‘‘occupied’’)
This journal is ª The Royal Society of Chemistry 2010
of size equal to that of the lattice being simulated was initialized

to zero (all positions vacant). Periodic boundary conditions

were used to minimize finite-size effects. Initially all sites were

assigned the same rate k0 ¼ 1 in arbitrary units. At each iter-

ation of the sequential process, a site was chosen at random for

an adsorption trial. The probability of a site being chosen was

set to be proportional to the rate of adsorption assigned to it. If

adsorption of a particle was allowed by the exclusion rules, the

state of that site was changed to ‘‘occupied’’ and the adsorption

rate of vacant sites at 3NN and 4NN positions was updated

using the set values of a and b. The iterations continued until no

further adsorption was allowed by the exclusion rules. Since the

evolution in time of the process was not of interest, the simu-

lation was sped up by periodically eliminating sites at which

adsorption was excluded from consideration as adsorption

candidates so that the frequency of unsuccessful adsorption

attempts remained low and the jammed state was attained

quickly.
B. Experimental

The microfiber array was prepared in epoxy, using a poly-

dimethylsiloxane (PDMS) mold fabricated from a silicon master.

The fabrication of the mold is described in detail in ref. 22. The

epoxy used was UVO-114 single component UV-initiated epoxy

(Epoxy Technology, Inc.). Epoxy was poured into the PDMS

mold using a pipette and allowed to cure under a B-100 UV lamp

(UVP Blak-Ray) for 20 min, after which the mold was peeled off.

The hardened epoxy sample was exposed to plasma in a FEMTO

plasma system (Diener Electronic) for 20 s to improve its

wettability. To induce clustering, the sample was placed on a flat

surface and 10 ml of absolute anhydrous ethanol was dropped on

it using a pipette. The ethanol was allowed to evaporate under

ambient conditions.

Optical microscope mages of the clustered microfiber sample

used for pattern recognition were taken using a Leica DMRX

microscope connected to a QImaging Evolution VF CCD

camera. SEM images used for illustrations in the main text

were recorded with a JEOL JSM-6390 scanning electron

microscope.
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