Kolle, Mathias

2017
Sutton A, Shirman T, Timonen JVI, England GT, Kim P, Kolle M, Ferrante T, Zarzar LD, Strong E, Aizenberg J. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation. Nat. Commun. [Internet]. 2017;8 :14700. Full TextAbstract

Mechanical forces in the cell’s natural environment have a crucial impact on growth,
differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.

2016
Pouya C, Overvelde JTB, Kolle M, Aizenberg J, Bertoldi K, Weaver JC, Vukusic P. Characterization of a Mechanically Tunable Gyroid Photonic Crystal Inspired by the Butterfly Parides Sesostris. Adv. Optical Mater. 2016;4 (1) :99-105.Abstract
A mechanically tunable macroscale replica of the gyroid photonic crystal found in the Parides sesostris butterfly's wing scales is systematically characterized. By monitoring both photonic frequency changes and the distribution of stress fields within the compressed structure, electromagnetic transmission features are found and can be frequency-tuned and the structure only contains localized high stress fields when highly compressed.
2015
Vogel N, Utech S, England GT, Shirman T, Phillips KR, Koay N, Burgess IB, Kolle M, Weitz DA, Aizenberg J. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies. Proc. Nat. Acad. Sci. [Internet]. 2015;112 (35) :10845-10850. Publisher's VersionAbstract
Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature.
Schaffner M, England G, Kolle M, Aizenberg J, Vogel N. Combining Bottom-Up Self-Assembly with Top-Down Microfabrication to Create Hierarchical Inverse Opals with High Structural Order. Small [Internet]. 2015;11 (34) :4334-4340. Full TextAbstract
Colloidal particles can assemble into ordered crystals, creating periodically structured materials at the nanoscale without relying on expensive equipment. The combination of small size and high order leads to strong interaction with visible light, which induces macroscopic, iridescent structural coloration. To increase the complexity and functionality, it is important to control the organization of such materials in hierarchical structures with high degrees of order spanning multiple length scales. Here, a bottom-up assembly of polystyrene particles in the presence of a silica sol–gel precursor material (tetraethylorthosilicate, TEOS), which creates crack-free inverse opal films with high positional order and uniform crystal alignment along the (110) crystal plane, is combined with top-down microfabrication techniques. Micrometer scale hierarchical superstructures having a highly regular internal nanostructure with precisely controlled crystal orientation and wall profiles are produced. The ability to combine structural order at the nano- and microscale enables the fabrication of materials with complex optical properties resulting from light–matter interactions at different length scales. As an example, a hierarchical diffraction grating, which combines Bragg reflection arising from the nanoscale periodicity of the inverse opal crystal with grating diffraction resulting from a micrometer scale periodicity, is demonstrated.
Li L, Kolle S, Weaver JC, Ortiz C, Aizenberg J, Kolle M. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet. Nat. Commun. [Internet]. 2015;6 :6322. Full TextAbstract
Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.
Li L, Connors MJ, Kolle M, England GT, Speiser DI, Xiao X, Aizenberg J, Ortiz C. Multifunctionality of chiton biomineralized armor with an integrated visual system. Science [Internet]. 2015;350 (6263) :952-956. Full TextAbstract
Nature provides a multitude of examples of multifunctional structural materials in which trade-offs are imposed by conflicting functional requirements. One such example is the biomineralized armor of the chiton Acanthopleura granulata, which incorporates an integrated sensory system that includes hundreds of eyes with aragonite-based lenses. We use optical experiments to demonstrate that these microscopic lenses are able to form images. Light scattering by the polycrystalline lenses is minimized by the use of relatively large, crystallographically aligned grains. Multiscale mechanical testing reveals that as the size, complexity, and functionality of the integrated sensory elements increase, the local mechanical performance of the armor decreases. However, A. granulata has evolved several strategies to compensate for its mechanical vulnerabilities to form a multipurpose system with co-optimized optical and structural functions.
2014
England G, Kolle M, Kim P, Khan M, Munoz P, Mazur E, Aizenberg J. Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna. Proc. Nat. Acad. Sci. [Internet]. 2014;111 (44) :15630–15634. Full TextAbstract

Recently, diffraction elements that reverse the color sequence normally observed in planar diffraction gratings have been found in the wing scales of the butterfly Pierella luna. Here, we describe the creation of an artificial photonic material mimicking this re- verse color-order diffraction effect. The bioinspired system con- sists of ordered arrays of vertically oriented microdiffraction gratings. We present a detailed analysis and modeling of the cou- pling of diffraction resulting from individual structural compo- nents and demonstrate its strong dependence on the orientation of the individual miniature gratings. This photonic material could provide a basis for novel developments in biosensing, anticoun- terfeiting, and efficient light management in photovoltaic systems and light-emitting diodes.

Koay N, Burgess I, Kay T, Nerger B, Miles-Rossouw M, Shirman T, Vu T, England G, Phillips K, Utech S, et al. Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments. Opt. Express [Internet]. 2014;22 (23) :27750-27768. Publisher's VersionAbstract

We present a simple one-pot co-assembly method for the synthesis of hierarchically structured pigment particles consisting of silica inverse-opal bricks that are doped with plasmonic absorbers. We study the interplay between the plasmonic and photonic resonances and their effect on the visual appearance of macroscopic collections of photonic bricks that are distributed in randomized orientations. Manipulating the pore geometry tunes the wavelength- and angle-dependence of the scattering profile, which can be engineered to produce angle-dependent Bragg resonances that can either enhance or contrast with the color produced by the plasmonic absorber. By controlling the overall dimensions of the photonic bricks and their aspect ratios, their preferential alignment can either be encouraged or suppressed. This causes the Bragg resonance to appear either as uniform color travel in the former case or as sparse iridescent sparkle in the latter case. By manipulating the surface chemistry of these photonic bricks, which introduces a fourth length-scale (molecular) of independent tuning into our design, we can further engineer interactions between liquids and the pores. This allows the structural color to be maintained in oil-based formulations, and enables the creation of dynamic liquid-responsive images from the pigment.

Vasquez Y, Kolle M, Mishchenko L, Hatton BD, Aizenberg J. Three-Phase Co-Assembly: In-situ Incorporation of Nanoparticles into Tunable, Highly-Ordered, Porous Silica FIlms. ACS Photonics [Internet]. 2014;1 (1) :53-60. Full TextAbstract

We present a reproducible, one-pot colloidal co-assembly approach that results in large-scale, highly ordered porous silica films with embedded, uniformly distributed, accessible gold nanoparticles. The unique coloration of these inverse opal films combines iridescence with plasmonic effects. The coupled optical properties are easily tunable either by changing the concentration of added nanoparticles to the solution before assembly or by localized growth of the embedded Au nanoparticles upon exposure to tetrachloroauric acid solution, after colloidal template removal. The presence of the selectively absorbing particles furthermore enhances the hue and saturation of the inverse opals’ color by suppressing incoherent diffuse scattering. The composition and optical properties of these films are demonstrated to be locally tunable using selective functionalization of the doped opals.

Phillips KR, Vogel N, Hu Y, Kolle M, Perry CC, Aizenberg J. Tunable Anisotropy in Inverse Opals and Emerging Optical Properties. Chem. Mater. [Internet]. 2014;26 (4) :1622-1628. Publisher's VersionAbstract

Using self-assembly, nanoscale materials can be fabricated from the bottom up. Opals and inverse opals are examples of self-assembled nanomaterials made from crystallizing colloidal particles. As self-assembly requires a high level of control, it is challenging to use building blocks with anisotropic geometry to form complex opals, which limits the possible structures. Typically, spherical colloids are employed as building blocks, leading to symmetric, isotropic superstructures. However, a significantly richer palette of directionally dependent properties are expected if less symmetric, anisotropic structures can be created, especially originating from the assembly of regular, spherical particles. Here we show a simple method for introducing anisotropy into inverse opals by subjecting them to a post-assembly thermal treatment that results in directional shrinkage of the silica matrix caused by condensation of partially hydrated sol−gel silica structures. In this way, we can tailor the shape of the pores, and the anisotropy of the final inverse opal preserves the order and uniformity of the self-assembled structure. Further, we prevent the need to synthesize complex oval-shaped particles and crystallize them into such target geometries. Detailed X-ray photoelectron spectroscopy and infrared spectroscopy studies clearly identify increasing degrees of sol−gel condensation in confinement as a mechanism for the structure change. A computer simulation of structure changes resulting from the condensation-induced shrinkage further confirmed this mechanism. As an example of property changes induced by the introduction of anisotropy, we characterized the optical spectra of the anisotropic inverse opals and found that the optical properties can be controlled in a precise way using calcination temperature.

2013
Hatton BD, Wheeldon I, Hancock MJ, Kolle M, Aizenberg J, Ingber DE. An artificial vasculature for adaptive thermal control of windows. Solar Energy Materials and Solar Cells [Internet]. 2013;117 :429-436. Publisher's VersionAbstract
Windows are a major source of energy inefficiency in buildings. In addition, heating by thermal radiation reduces the efficiency of photovoltaic panels. To help reduce heating by solar absorption in both of these cases, we developed a thin, transparent, bio-inspired, convective cooling layer for building windows and solar panels that contains microvasculature with millimeter-scale, fluid-filled channels. The thin cooling layer is composed of optically clear silicone rubber with microchannels fabricated using microfluidic engineering principles. Infrared imaging was used to measure cooling rates as a function of flow rate and water temperature. In these experiments, flowing room temperature water at 2 mL/min reduced the average temperature of a model 10×10 cm2 window by approximately 7–9 °C. An analytic steady-state heat transfer model was developed to augment the experiments and make more general estimates as functions of window size, channel geometry, flow rate, and water temperature. Thin cooling layers may be added to one or more panes in multi-pane windows or as thin film non-structural central layers. Lastly, the color, optical transparency and aesthetics of the windows could be modulated by flowing different fluids that differ in their scattering or absorption properties.
Kolle M, Lethbridge A, Kreysing M, Baumberg JJ, Aizenberg J, Vukusic P. Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers. Adv. Mater. [Internet]. 2013;25 (15) :2239-2245. Full Text
Kats MA, Byrnes SJ, Blanchard R, Kolle M, Genevet P, Aizenberg J, Capasso F. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings. Appl. Phys. Lett. [Internet]. 2013;103 :101104. Publisher's VersionAbstract
Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.
Kim P, Hu Y, Alvarenga J, Kolle M, Suo Z, Aizenberg J. Rational Design of Mechano-Responsive Optical Materials by Fine Tuning the Evolution of Strain-Dependent Wrinkling Patterns. Adv. Optical Mater. [Internet]. 2013;1 (5) :381-388. Publisher's VersionAbstract
Rational design strategies for mechano‐responsive optical material systems are created by introducing a simple experimental system that can continuously vary the state of bi‐axial stress to induce various wrinkling patterns, including stripes, labyrinths, herringbones, and rarely observed checkerboards, that can dynamically tune the optical properties. In particular, a switching of two orthogonally oriented stripe wrinkle patterns from oxidized polydimethylsiloxane around the critical strain value is reported, as well as the coexistence of these wrinkles forming elusive checkerboard patterns, which are predicted only in previous simulations. These strain‐induced wrinkle patterns give rise to dynamic changes in optical transmittance and diffraction patterns. A theoretical description of the observed pattern formation is presented which accounts for the residual stress in the membrane and allows for the fine‐tuning of the window of switching of the orthogonal wrinkles. Applications of wrinkle‐induced changes in optical properties are demonstrated, including a mechanically responsive instantaneous privacy screen and a transparent sheet that reversibly reveals a message or graphic and dynamically switches the transmittance when stretched and released.
2012
Mishchenko L, Hatton B, Kolle M, Aizenberg J. Patterning Hierarchy in Direct and Inverse Opal Crystals. Small. 2012;8 (12) :1904-1911. 2012Small.Mishchenko.patterning_hierarchy.pdf
Burgoyne H, Kim P, Kolle M, Epstein AK, Aizenberg J. Screening Conditions for Rationally Engineered Electrodeposition of Nanostructures (SCREEN): Electrodeposition and Applications of Polypyrrole Nanofibers using MIcrofluidic Gradients. Small. 2012;8 (22) :3502-3509. Burgoyne_Small2012.pdf
Burgess IB, Koay N, Raymond KP, Kolle M, Loncar M, and Aizenberg J. Wetting in Color: Colorimetric Differentiation of Organic Liquids with High Selectivity. ACS Nano. 2012;6 (12) :1427-1437. WICK_ACS_Nano.pdf
2011
Zarzar LD, Kim P, Kolle M, Brinker CJ, Aizenberg J, and Kaehr B. Direct Writing and Actuation of Three-Dimensionally Patterned Hydrogel Pads on Micropillar Supports. Angew. Chem. Int. Ed. 2011;123. 2011_AngewChem_Lauren.pdf
Burgess IB, Mishchenko L, Hatton BD, Kolle M, Loncar M, Aizenberg J. Encoding complex wettability patterns in chemically functionalized 3D photonic crystals. J. Am. Chem. Soc. 2011;133 (32) :12430-12432. JACS_W-Ink_2011.pdf