Publications

Submitted
Park D, Craig S, Bechthold M, Aizenberg J. Adaptive Building Envelope System with Integrated Thermal Insulation and Heat Recovery System. Building and Environment. Submitted.
2018
Daniel D, Timonen JVI, Li R, Velling SJ, Kreder MJ, Tetreault A, Aizenberg J. Origins of liquid-repellency on structured, flat, and lubricated surfaces . Phys. Rev. Lett. 2018.Abstract
There are currently three main classes of liquid-repellent surfaces: micro-/nano-structured superhydrophobic surfaces, flat surfaces grafted with `liquid-like' polymer brushes, and lubricated surfaces. Despite recent progress, the mechanistic explanation for the differences in droplet behavior on such surfaces is still under debate. Here, we measured the dissipative force acting on a droplet moving on representatives of these surfaces at different velocities U = 0.01--1 mm/s using a cantilever force sensor with sub-μN accuracy, and correlated it to the contact line dynamics observed using optical interferometry at high spatial (micron) and temporal (lessthan 0.1s) resolutions. We find that the dissipative force---due to very different physical mechanisms at the contact line---is independent of velocity on superhydrophobic surfaces, but depends non-linearly on velocity for flat and lubricated surfaces. The techniques and insights presented here will inform future work on liquid-repellent surfaces and enable their rational design.
Hinz K, Alvarenga J, Kim P, Park D, Aizenberg J, Bechthold M. Pneumatically adaptive light modulation system (PALMS) for buildings. Materials & Design [Internet]. 2018;152 :156-167. Publisher's VersionAbstract

This research introduces a novel approach to control light transmittance based on flexible polydimethylsiloxane (PDMS) films that have been plasma-treated such that micro-scale surface features have a visual effect as the film responds to applied strain. The effect is continuously tunable from optically clear (71.5% Transmittance over a 400–900 nm wavelength) to completely diffuse (18.1% T). Changes in the film's optical properties are triggered by bi-axial strains applied using a pneumatic system to form pressurized envelopes. This paper reports on a series of experimental studies and provides system integration research using prototypes, simulations and geometric models to correlate measured optical properties, strain, and global surface curvatures. In conclusion, a design is proposed to integrate PDMS light control within existing building envelopes.

Two alternatives are investigated and compared: System A uses positive pressure featuring an exterior grid to restrain and shape the inflated film during expansion; System B uses negative pressure where the films are shaped according to the geometry of an interstitial grid that serves as a spacer between two film surfaces. Both systems can provide effective control of opacity levels using pneumatic pressure and may be suitable for use with existing glazing systems or ethylene tetrafluoroethylene (ETFE) pneumatic envelopes.

Yao Y, Aizenberg J, Park K-C. Dropwise Condensation on Hydrophobic Bumps and Dimples. Appl. Phys. Lett. [Internet]. 2018;112 (15) :151605. Full TextAbstract
Surface topography plays an important role in promoting or suppressing localized condensation. In this work, we study the growth of water droplets on hydrophobic convex surface textures such as bumps and concave surface textures such as dimples with a millimeter scale radius of curvature. We analyze the spatio-temporal droplet size distribution under a supersaturation condition created by keeping the uniform surface temperature below the dew point and show its relationship with the sign and magnitude of the surface curvature. In particular, in contrast to the well-known capillary condensation effect, we report an unexpectedly less favorable condensation on smaller, millimeter-scale dimples where the capillary condensation effect is negligible. To explain these experimental results, we numerically calculated the diffusion flux of water vapor around the surface textures, showing that its magnitude is higher on bumps and lower on dimples compared to a flat surface. We envision that our understanding of millimetric surface topography can be applied to improve the energy efficiency of condensation in applications such as water harvesting, heating, ventilation, and air conditioning systems for buildings and transportation, heat exchangers, thermal desalination plants, and fuel processing systems.
Li L, Fijneman AJ, Kaandorp JA, Aizenberg J, Noorduin WL. Directed nucleation and growth by balancing local supersaturation and substrate/nucleus lattice mismatch. PNAS [Internet]. 2018;14 :3573-3580. Publisher's VersionAbstract
Controlling nucleation and growth is crucial in biological and artificial mineralization and self-assembly processes. The nucleation barrier is determined by the chemistry of the interfaces at which crystallization occurs and local supersaturation. Although chemically tailored substrates and lattice mismatches are routinely used to modify energy landscape at the substrate/nucleus interface and thereby steer heterogeneous nucleation, strategies to combine this with control over local supersaturations have remained virtually unexplored. Here we demonstrate simultaneous control over both parameters to direct the positioning and growth direction of mineralizing compounds on preselected polymorphic substrates. We exploit the polymorphic nature of calcium carbonate (CaCO3) to locally manipulate the carbonate concentration and lattice mismatch between the nucleus and substrate, such that barium carbonate (BaCO3) and strontium carbonate (SrCO3) nucleate only on specific CaCO3 polymorphs. Based on this approach we position different materials and shapes on predetermined CaCO3 polymorphs in sequential steps, and guide the growth direction using locally created supersaturations. These results shed light on nature’s remarkable mineralization capabilities and outline fabrication strategies for advanced materials, such as ceramics, photonic structures, and semiconductors.
Hou X, Li J, Tesler AB, Yao Y, Wang M, Min L, Sheng Z, Aizenberg J. Dynamic air/liquid pockets for guiding microscale flow. Nat. Commun. [Internet]. 2018;9 :733. Full TextAbstract

Microscale flows of fluids are mainly guided either by solid matrices or by liquid–liquid interfaces. However, the solid matrices are plagued with persistent fouling problems, while liquid–liquid interfaces are limited to low-pressure applications. Here we report a dynamic liquid/solid/gas material containing both air and liquid pockets, which are formed by partially infiltrating a porous matrix with a functional liquid. Using detailed theoretical and experimental data, we show that the distribution of the air- and liquid-filled pores is responsive to pressure and enables the formation and instantaneous recovery of stable liquid–liquid interfaces that sustain a wide range of pressures and prevent channel contamination. This adaptive design is demonstrated for polymeric materials and extended to metal-based systems that can achieve unmatched mechanical and thermal stability. Our platform with its unique adaptive pressure and antifouling capabilities may offer potential solutions to flow control in microfluidics, medical devices, microscale synthesis, and biological assays.

Phillips KR, Shirman T, Shirman E, Shneidman AV, Kay TM, Aizenberg J. Nanocrystalline Precursors for the Co-Assembly of Crack-Free Metal Oxide Inverse Opals. Adv. Mater. [Internet]. 2018;30 :1706329. Publisher's VersionAbstract

Inorganic microstructured materials are ubiquitous in nature. However, their formation in artificial self-assembly systems is challenging as it involves a complex interplay of competing forces during and after assembly. For example, colloidal assembly requires fine-tuning of factors such as the size and surface charge of the particles and electrolyte strength of the solvent to enable successful self-assembly and minimize crack formation. Co-assembly of templating colloidal particles together with a sol–gel matrix precursor material helps to release stresses that accumulate during drying and solidification, as previously shown for the formation of high-quality inverse opal (IO) films out of amorphous silica. Expanding this methodology to crystalline materials would result in microscale architectures with enhanced photonic, electronic, and catalytic properties. This work describes tailoring the crystallinity of metal oxide precursors that enable the formation of highly ordered, large-area (mm2) crack-free titania, zirconia, and alumina IO films. The same bioinspired approach can be applied to other crystalline materials as well as structures beyond IOs.

Wu F, Chen S, Chen B, Wang M, Min L, Alvarenga J, Ju J, Khademhosseini A, Yao Y, Zhang YS, et al. Bioinspired Universal Flexible Elastomer-Based Microchannels. Small [Internet]. 2018;14 :1702170. Publisher's VersionAbstract

Flexible and stretchable microscale fluidic devices have a broad range of potential applications, ranging from electronic wearable devices for convenient digital lifestyle to biomedical devices. However, simple ways to achieve stable flexible and stretchable fluidic microchannels with dynamic liquid transport have been challenging because every application for elastomeric microchannels is restricted by their complex fabrication process and limited material selection. Here, a universal strategy for building microfluidic devices that possess exceptionally stable and stretching properties is shown. The devices exhibit superior mechanical deformability, including high strain (967%) and recovery ability, where applications as both strain sensor and pressure-flow regulating device are demonstrated. Various microchannels are combined with organic, inorganic, and metallic materials as stable composite microfluidics. Furthermore, with surface chemical modification these stretchable microfluidic devices can also obtain antifouling property to suit for a broad range of industrial and biomedical applications.

Daniel D, Yao X, Aizenberg J. Stable Liquid Jets Bouncing off Soft Gels. Phys. Rev. Lett. [Internet]. 2018;120 (2) :028006. Publisher's VersionAbstract

A liquid jet can stably bounce off a sufficiently soft gel by following the contour of the dimple created upon impact. This new phenomenon is insensitive to the wetting properties of the gels and was observed for different liquids over a wide range of surface tensions, γ = 24 − 72 mN/m. In contrast, other jet rebound phenomena are typically sensitive to γ: only a high γ jet rebounds off a hard solid (e.g. superhydrophobic surface) and only a low γ jet bounces off a liquid bath. This is because an air layer must be stabilized between the two interfaces. For a soft gel, no air layer is necessary and the jet rebound remains stable even when there is direct liquid-gel contact.

England GT, Aizenberg J. Emerging Optical Properties from the Combination of Simple Optical Effects. Rep. Prog. Phys. [Internet]. 2018;81 (1) :016402. Publisher's VersionAbstract

Structural color arises from the patterning of geometric features or refractive indices of the constituent materials on the length-scale of visible light. Many different organisms have developed structurally colored materials as a means of creating multifunctional structures or displaying colors for which pigments are unavailable. By studying such organisms, scientists have developed artificial structurally colored materials that take advantage of the hierarchical geometries, frequently employed for structural coloration in nature. These geometries can be combined with absorbers—a strategy also found in many natural organisms—to reduce the effects of fabrication imperfections. Furthermore, artificial structures can incorporate materials that are not available to nature—in the form of plasmonic nanoparticles or metal layers—leading to a host of novel color effects. Here, we explore recent research involving the combination of different geometries and materials to enhance the structural color effect or to create entirely new effects, which cannot be observed otherwise.

Shirman T, Lattimer J, Luneau M, Shirman E, Reece C, Aizenberg M, Madix RJ, Aizenberg J, Friend CM. New Architectures for Designed Catalysts: Selective Oxidation using AgAu Nanoparticles on Colloid-Templated Silica. Chem. Eur. J. [Internet]. 2018;24 :1833 –1837 . Publisher's VersionAbstract

A highly modular synthesis of designed catalysts with controlled bimetallic nanoparticle size and composition and a well-defined structural hierarchy is demonstrated. Exemplary catalysts—bimetallic dilute Ag-in-Au nanoparticles partially embedded in a porous SiO2 matrix (SiO2–AgxAuy)— were synthesized by the decoration of polymeric colloids with the bimetallic nanoparticles followed by assembly into a colloidal crystal backfilled with the matrix precursor and subsequent removal of the polymeric template. This work reports that these new catalyst architectures are significantly better than nanoporous dilute AgAu alloy catalysts (nanoporous Ag3Au97) while retaining a clear predictive relationship between their surface reactivity with that of single-crystal Au surfaces. This paves the way for broadening the range of new catalyst architectures required for translating the designed principles developed under controlled conditions to designed catalysts under operating conditions for highly selective coupling of alcohols to form esters. Excellent catalytic performance of the porous SiO2–AgxAuy structure for selective oxidation of both methanol and ethanol to produce esters with high conversion efficiency, selectivity, and stability was demonstrated, illustrating the ability to translate design principles developed for support-free materials to the colloid-templated structures. The synthetic methodology reported is customizable for the design of a wide range of robust catalytic systems inspired by design principles derived from model studies. Fine control over the composition, morphology, size, distribution, and availability of the supported nanoparticles was demonstrated.

2017
Shirman E, Shirman T, Shneidman AV, Grinthal A, Phillips KR, Whelan H, Bulger E, Abramovitch M, Patil J, Nevarez R, et al. Modular Design of Advanced Catalytic Materials Using Hybrid Organic–Inorganic Raspberry Particles. Adv. Func. Mater. [Internet]. 2017 :1704559. Publisher's VersionAbstract

Catalysis is one of the most sophisticated areas of materials research that encompasses a diverse set of materials and phenomena occurring on multiple length and time scales. Designing catalysts that can be broadly applied toward global energy and environmental challenges requires the development of universal frameworks for complex catalytic systems through rational and independent (or quasi-independent) optimization of multiple structural and compositional features. Toward addressing this goal, a modular platform is presented in which sacrificial organic colloids bearing catalytic nanoparticles on their surfaces self-assemble with matrix precursors, simultaneously structuring the resulting porous networks and fine-tuning the locations of catalyst particles. This strategy allows combinatorial variations of the material building blocks and their organization, in turn providing numerous degrees of freedom for optimizing the material’s functional properties, from the nanoscale to the macroscale. The platform enables systematic studies and rational design of efficient and robust systems for a wide range of catalytic and photocatalytic reactions, as well as their integration into industrial and other real-life environments.

Aizenberg M, Okeyoshi K, Aizenberg J. Inverting the Swelling Trends in Modular Self-Oscillating Gels Crosslinked by Redox-Active Metal Bipyridine Complexes. Adv. Func. Mater. [Internet]. 2017 :1704205. Publisher's VersionAbstract

The developing field of active, stimuli-responsive materials is in need for new dynamic architectures that may offer unprecedented chemomechanical switching mechanisms. Toward this goal, syntheses of polymerizable bipyridine ligands, bis(4-vinylbenzyl)[2,2′-bipyridine]-4,4′-dicarboxylate and N4,N4′-bis(4-vinylphenyl)-2,2′-bipyridine-4,4′-dicarboxamide, and a number of redox-active Ruthenium(II) and Iron(II) complexes with them are reported. Detailed characterizations by NMR, Fourier transform infrared spectroscopy, high-resolution mass-spectrometry, X-ray, and cyclic voltammetry show that the topology of these molecules allows them to serve as both comonomers and crosslinkers in polymerization reactions. Electronic properties of the ligands are tunable by choosing carboxylate- or carboxamido-linkages between the core and the vinylaryl moieties, leading to a library of Ru and Fe complexes with the M(III)/M(II) standard redox potentials suitable for catalyzing self-oscillating Belousov–Zhabotinskii (BZ) reaction. New poly(N-isopropylacrylamide)-based redox-responsive functional gels containing hydrophilic comonomers, which have been prepared using representative Ru bpy complexes as both a crosslinker and redox-active catalyst, exhibit a unique feature: their swelling/contraction mode switches its dependence on the oxidation state of the Ru center, upon changing the ratio of comonomers in the hybrid gel network. The BZ self-oscillations of such crosslinked hydrogels have been observed and quantified for both supported film and free-standing gel samples, demonstrating their potential as chemomechanically active modules for new functional materials.

Kumar K, Liu J, Christianson C, Ali M, Tolley MT, Aizenberg J, Ingber DE, Weaver JC, Bertoldi K. A Biologically Inspired, Functionally Graded End Effector for Soft Robotics Applications. Soft Robotics [Internet]. 2017;4 (4) :317-323. Publisher's VersionAbstract

Soft robotic actuators offer many advantages over their rigid counterparts, but they often are unable to apply highly localized point loads. In contrast, many invertebrates have not only evolved extremely strong ‘‘hybrid appendages’’ that are composed of rigid ends that can grasp, puncture, and anchor into solid substrates, but they also are compliant and resilient, owing to the functionally graded architecture that integrates rigid termini with their flexible and highly extensible soft musculatures. Inspired by the design principles of these natural hybrid appendages, we demonstrate a synthetic hybrid end effector for soft-bodied robots that exhibits excellent piercing abilities. Through the incorporation of functionally graded interfaces, this design strategy minimizes stress concentrations at the junctions adjoining the fully rigid and soft components and optimizes the bending stiffness to effectively penetrate objects without interfacial failure under shear and compressive loading re- gimes. In this composite architecture, the radially aligned tooth-like elements apply balanced loads to maximize puncturing ability, resulting in the coordinated fracture of an object of interest.

Amini S, Kolle S, Petrone L, Ahanotu O, Sunny S, Sutanto CN, Hoon S, Cohen L, Weaver JC, Aizenberg J, et al. Preventing mussel adhesion using lubricant-infused materials. Science [Internet]. 2017;357 (6352) :668-673. Publisher's VersionAbstract

Mussels are opportunistic macrofouling organisms that can attach to most immersed solid surfaces, leading to serious economic and ecological consequences for the maritime and aquaculture industries. We demonstrate that lubricant-infused coatings exhibit very low preferential mussel attachment and ultralow adhesive strengths under both controlled laboratory conditions and in marine field studies. Detailed investigations across multiple length scales—from the molecular-scale characterization of deposited adhesive proteins to nanoscale contact mechanics to macroscale live observations—suggest that lubricant infusion considerably reduces fouling by deceiving the mechanosensing ability of mussels, deterring secretion of adhesive threads, and decreasing the molecular work of adhesion. Our study demonstrates that lubricant infusion represents an effective strategy to mitigate marine biofouling and provides insights into the physical mechanisms underlying adhesion prevention.

Daniel D, Timonen JVI, Li R, Velling SJ, Aizenberg J. Oleoplaning droplets on lubricated surfaces. Nat. Phys. [Internet]. 2017;13 (10) :1020-1025. Full TextAbstract

Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide o at a small tilt angle <5◦ . This behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau–Levich–Derjaguin law. The droplet is therefore oleoplaning—akin to tyres hydroplaning on a wet road—with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.

England GT, Russell C, Shirman E, Kay T, Vogel N, Aizenberg J. The Optical Janus Effect: Asymmetric Structural Color Reflection Materials. Adv. Mater. [Internet]. 2017;29 (29) :1606876. Publisher's VersionAbstract
Structurally colored materials are often used for their resistance to photobleaching and their complex viewing-direction-dependent optical properties. Frequently, absorption has been added to these types of materials in order to improve the color saturation by mitigating the effects of nonspecific scattering that is present in most samples due to imperfect manufacturing procedures. The combination of absorbing elements and structural coloration often yields emergent optical properties. Here, a new hybrid architecture is introduced that leads to an interesting, highly directional optical effect. By localizing absorption in a thin layer within a transparent, structurally colored multilayer material, an optical Janus effect is created, wherein the observed reflected color is different on one side of the sample than on the other. A systematic characterization of the optical properties of these structures as a function of their geometry and composition is performed. The experimental studies are coupled with a theoretical analysis that enables a precise, rational design of various optical Janus structures with highly controlled color, pattern, and fabrication approaches. These asymmetrically colored materials will open applications in art, architecture, semitransparent solar cells, and security features in anticounterfeiting materials.
Alvarez MM, Aizenberg J, Analoui M, Andrews AM, Bisker G, Boyden ES, Kamm RD, Karp JM, Mooney DJ, Oklu R, et al. Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano [Internet]. 2017;11 (6) :5195-5214. Publisher's VersionAbstract

We discuss the state of the art and innovative micro- and nanoscale technologies that are finding niches and opening up new opportunities in medicine, particularly in diagnostic and therapeutic applications. We take the design of point-of-care applications and the capture of circulating tumor cells as illustrative examples of the integration of micro- and nanotechnologies into solutions of diagnostic challenges. We describe several novel nanotechnologies that enable imaging cellular structures and molecular events. In therapeutics, we describe the utilization of micro- and nanotechnologies in applications including drug delivery, tissue engineering, and pharmaceutical development/testing. In addition, we discuss relevant challenges that micro- and nanotechnologies face in achieving cost-effective and widespread clinical implementation as well as forecasted applications of micro- and nanotechnologies in medicine.

Hou X, Zhang YS, Trujillo-de Santiago G, Alvarez MM, Ribas J, Jonas SJ, Weiss PS, Andrews AM, Aizenberg J, Khademhosseini A. Interplay between materials and microfluidics. Nat. Rev. Mater. [Internet]. 2017;2 (5) :17016. Publisher's VersionAbstract

Developments in the field of microfluidics have triggered technological revolutions in many disciplines, including chemical synthesis, electronics, diagnostics, single-cell analysis, micro- and nanofabrication, and pharmaceutics. In many of these areas, rapid growth is driven by the increasing synergy between fundamental materials development and new microfluidic capabilities. In this Review, we critically evaluate both how recent advances in materials fabrication have expanded the frontiers of microfluidic platforms and how the improved microfluidic capabilities are, in turn, furthering materials design. We discuss how various inorganic and organic materials enable the fabrication of systems with advanced mechanical, optical, chemical, electrical and biointerfacial properties — in particular, when these materials are combined into new hybrids and modular configurations. The increasing sophistication of microfluidic techniques has also expanded the range of resources available for the fabrication of new materials, including particles and fibres with specific functionalities, 3D (bio)printed composites and organoids. Together, these advances lead to complex, multifunctional systems, which have many interesting potential applications, especially in the biomedical and bioengineering domains. Future exploration of the interactions between materials science and microfluidics will continue to enrich the diversity of applications across engineering as well as the physical and biomedical sciences.

Kaplan CN, Noorduin WL, Li L, Sadza R, Folkertsma L, Aizenberg J, Mahadevan L. Controlled growth and form of precipitating microstructures. Science [Internet]. 2017;355 (6332) :1395-1399. Publisher's VersionAbstract

Controlled self-assembly of three-dimensional shapes holds great potential for fabrication of functional materials. Their practical realization requires a theoretical framework to quantify and guide the dynamic sculpting of the curved structures that often arise in accretive mineralization. Motivated by a variety of bioinspired coprecipitation patterns of carbonate and silica, we develop a geometrical theory for the kinetics of the growth front that leaves behind thin-walled complex structures. Our theory explains the range of previously observed experimental patterns and, in addition, predicts unexplored assembly pathways. This allows us to design a number of functional base shapes of optical microstructures, which we synthesize to demonstrate their light-guiding capabilities. Overall, our framework provides a way to understand and control the growth and form of functional precipitating microsculptures.

Pages