2020

Tomholt L, Geletina O, Alvarenga J, Shneidman AV, Weaver JC, Fernandes MC, Mota SA, Bechthold M, Aizenberg J. Tunable infrared transmission for energy-efficient pneumatic building façades. Energy and Buildings. 2020;(226) :110377. Publisher's VersionAbstract

Thermal regulation of buildings in climates with daily and seasonal weather changes can prove challenging and result in high building energy consumption. While adaptable façades with tunable infrared transmitting properties could modulate solar transmittance through the building envelope and, as such, increase energy efficiency, available technologies to meet these needs are often expensive, relatively complicated, and challenging to implement in a lightweight form factor.

Motivated by these limitations, this report presents a novel tunable light-modulating technology for energy-efficient pneumatic façades in the form of polydimethylsiloxane (PDMS) film with a thin gold surface coating. Sequential stretching and relaxing of this film results in strain-induced microscale surface cracks that can significantly modulate both visible and near infrared light transmission, and consequently, the material’s solar heat gain coefficient (SHGC).

The material’s tunability has shown a significant potential to reduce building energy use, as assessed with building simulation software. The technology offers additional advantages for light modulation in pneumatic façades including real-time operation, ease of implementation and control, and predictable performance. Façade design guidelines for the integration of the infrared-regulating film into ethylene tetrafluoroethylene (ETFE) building envelopes and climate suitability are described, and a critical evaluation of material durability, optical clarity, and material costs are provided.

Adera S, Alvarenga J, Shneidman AV, Zhang CT, Davitt A, Aizenberg J. Depletion of Lubricant from Nanostructured Oil-Infused Surfaces by Pendant Condensate Droplets. ACS Nano. 2020;14 (7) :8024–8035. Publisher's VersionAbstract

Due to recent advances in nanofabrication, phase-change condensation heat transfer has seen a renaissance. Compared to conventional heat transfer surfaces, nanostructured surfaces impregnated with chemically matched lubrication films (hereinafter referred to as “nanostructured lubricated surfaces”) have been demonstrated to improve vapor-side phase-change condensation heat transfer by facilitating droplet nucleation, growth, and departure. While the presence of nanoscale roughness improves performance longevity by stabilizing the lubrication film via capillary forces, such enhancement is short-lived due to the eventual loss of lubrication oil by the departing droplets. The objective of this study is to characterize oil depletion caused by pendant droplets during condensation. For our study, we nanostructured, chemically functionalized, and lubricated horizontal copper tubes that are widely used in shell-and-tube heat exchangers in power plants and process industries. Using high-speed fluorescence imaging and thermogravimetric analysis, we show that shedding droplets exert a shear force on the oil in the wetting ridge at the water–oil interface. The viscous shear draws the lubrication film from the nanostructured surface onto the upper portion of the droplet and forms a ring-like oil skirt. Through detailed theoretical analysis, we show that the thickness of this oil skirt scales with the classical Landau–Levich–Derjaguin (LLD) theory for dip-coating. Our results reveal that droplets falling from horizontal tubes break unequally and leave behind small satellite droplets that retain the bulk of the oil in the wetting ridge. This observation is in stark contrast with the earlier description of droplets shedding from tilted flat plates where the entire oil-filled wetting ridge is demonstrated to leave the surface upon droplet departure. By selecting lubrication oils of varying viscosity and spreading coefficient, we provide evidence that the contribution of the wrapping layer to the rate of oil depletion is insignificant. Furthermore, we show that due to the nanoscale features on the tubes, nearly half of the lubrication film remains on the surface after 10 h of continuous steam condensation at ambient pressure, 23 °C, and 60% relative humidity, a 2–3-fold improvement over previous results.The insights gained from this work will provide guidelines for the rational design of long-lasting nanostructured lubricated surfaces for phase-change condensation.

Phillips KR, Zhang CT, Yang T, Kay T, Gao C, Brandt S, Liu L, Yang H, Li Y, Aizenberg J, et al. Fabrication of Photonic Microbricks via Crack Engineering of Colloidal Crystals. Advanced Functional Materials. 2020;(30) :1908242. Publisher's VersionAbstract

Evaporation-induced self-assembly of colloidal particles is one of the most versatile fabrication routes to obtain large-area colloidal crystals; however, the formation of uncontrolled “drying cracks” due to gradual solvent evaporation represents a significant challenge of this process. While several methods are reported to minimize crack formation during evaporation-induced colloidal assembly, here an approach is reported to take advantage of the crack formation as a patterning tool to fabricate microscopic photonic structures with controlled sizes and geometries. This is achieved through a mechanistic understanding of the fracture behavior of three different types of opal structures, namely, direct opals (colloidal crystals with no matrix material), compound opals (colloidal crystals with matrix material), and inverse opals (matrix material templated by a sacrificial colloidal crystal). This work explains why, while direct and inverse opals tend to fracture along the expected {111} planes, the compound opals exhibit a different cracking behavior along the nonclose-packed {110} planes, which is facilitated by the formation of cleavage-like fracture surfaces. The discovered principles are utilized to fabricate photonic microbricks by programming the crack initiation at specific locations and by guiding propagation along predefined orientations during the self-assembly process, resulting in photonic microbricks with controlled sizes and geometries.

Marcella N, Liu Y, Timoshenko J, Guan E, Luneau M, Shirman T, Plonka AM, van der Hoeven JES, Aizenberg J, Friend C, et al. Neural network assisted analysis of bimetallic nanocatalysts using X-ray absorption near edge structure spectroscopy. Physical Chemistry Chemical Physics. 2020;(22) :18902-18910. Publisher's VersionAbstract

X-ray absorption spectroscopy is a common method for probing the local structure of nanocatalysts. One portion of the X-ray absorption spectrum, the X-ray absorption near edge structure (XANES) is a useful alternative to the commonly used extended X-ray absorption fine structure (EXAFS) for probing three-dimensional geometry around each type of atomic species, especially in those cases when the EXAFS data quality is limited by harsh reaction conditions and low metal loading. A methodology for quantitative determination of bimetallic architectures from their XANES spectra is currently lacking. We have developed a method, based on the artificial neural network, trained on ab initio site-specific XANES calculations, that enables accurate and rapid reconstruction of the structural descriptors (partial coordination numbers) from the experimental XANES data. We demonstrate the utility of this method on the example of a series of PdAu bimetallic nanoalloys. By validating the neural network-yielded metal–metal coordination numbers based on the XANES analysis by previous EXAFS characterization, we obtained new results for in situ restructuring of dilute (2.6 at% Pd in Au) PdAu nanoparticles, driven by their gas and temperature treatments.


 
Ten Wyss faculty members were determined to be among the most highly cited researchers by Web of Science Group.

Wyss Institute Celebrates Highly Cited and Top Translational Researchers

November 20, 2020
  (BOSTON) — Web of Science Group has announced Highly Cited Researchers 2020 list, which identifies researchers who demonstrated significant influence in their chosen field or fields through the publication of multiple highly cited papers during the last decade. Their names are drawn from the publications that rank in the top 1% by citations for field and... Read more about Wyss Institute Celebrates Highly Cited and Top Translational Researchers
Paink GK, Kolle S, Le D, Weaver JC, Alvarenga J, Ahanotu O, Aizenberg J, Kim P. Dynamic Self-Repairing Hybrid Liquid-in-Solid Protective Barrier for Cementitious Materials. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces. 2020;12 (28) :31922 - 31932. Publisher's VersionAbstract
Corrosion and surface fouling of structural materials, such as concrete, are persistent problems accelerating undesirable material degradation for many industries and infrastructures. To counteract these detrimental effects, protective coatings are frequently applied, but these solid-based coatings can degrade or become mechanically damaged over time. Such irreversible and irreparable damage on solid-based protective coatings expose underlying surfaces and bulk materials to adverse environmental stresses leading to subsequent fouling and degradation. We introduce a new concept of a hybrid liquid-in-solid protective barrier (LIB) to overcome the limitations of traditional protective coatings with broad applicability to structural materials. Through optimization of capillary forces and reduction of the interfacial energy between an upper mobile liquid and a lower immobile solid phase, a stable liquid-based protective layer is created. This provides a persistent self-repairing barrier against the infiltration of moisture and salt, in addition to omniphobic surface properties. As a model experimental test bed, we applied this concept to cementitious materials, which are commonly used as binders in concrete, and investigated how the mobile liquid phase embedded within a porous solid support contributes to the material’s barrier protection and antifouling properties. Using industry standard test methods for acid resistance, chloride-ion penetrability, freeze–thaw cyclability, and mechanical durability, we demonstrate that LIBs exhibit significantly reduced water absorption and ion penetrability, improved repellency against various nonaqueous liquids, and resistance to corrosion while maintaining their required mechanical performance as structural materials.Corrosion and surface fouling of structural materials, such as concrete, are persistent problems accelerating undesirable material degradation for many industries and infrastructures. To counteract these detrimental effects, protective coatings are frequently applied, but these solid-based coatings can degrade or become mechanically damaged over time. Such irreversible and irreparable damage on solid-based protective coatings expose underlying surfaces and bulk materials to adverse environmental stresses leading to subsequent fouling and degradation. We introduce a new concept of a hybrid liquid-in-solid protective barrier (LIB) to overcome the limitations of traditional protective coatings with broad applicability to structural materials. Through optimization of capillary forces and reduction of the interfacial energy between an upper mobile liquid and a lower immobile solid phase, a stable liquid-based protective layer is created. This provides a persistent self-repairing barrier against the infiltration of moisture and salt, in addition to omniphobic surface properties. As a model experimental test bed, we applied this concept to cementitious materials, which are commonly used as binders in concrete, and investigated how the mobile liquid phase embedded within a porous solid support contributes to the material’s barrier protection and antifouling properties. Using industry standard test methods for acid resistance, chloride-ion penetrability, freeze–thaw cyclability, and mechanical durability, we demonstrate that LIBs exhibit significantly reduced water absorption and ion penetrability, improved repellency against various nonaqueous liquids, and resistance to corrosion while maintaining their required mechanical performance as structural materials.
Composite rendering that transitions from a glassy sponge skeleton on the left to a welded rebar-based lattice on the right, highlighting the biologically inspired nature of the research.

Marine sponges inspire the next generation of skyscrapers and bridges

September 21, 2020
When we think about sponges, we tend to think of something soft and squishy. But researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) are using the glassy skeletons of marine sponges as inspiration for the next generation of stronger and taller buildings, longer bridges, and lighter spacecraft. ... Read more about Marine sponges inspire the next generation of skyscrapers and bridges
Integrating Variable Signals in Hydrogels

Highlight: Integrating Variable Signals in Hydrogels

July 2, 2020
All living organisms have systems that can link multiple signals to manage tasks. For example, humans have systems of organs that can combine inputs from sight, hearing, and smell in a fear response that can cause our hearts to speed up. This ability—called complex signal integration—is not found in artificial systems. This new study demonstrates a pathway for simple, soft artificial materials to use multiple signals from external sources to produce distinct responses. ... Read more about Highlight: Integrating Variable Signals in Hydrogels
Morim DR, Meeks A, Shastri A, Tran A, Shneidman AV, Yashin VV, Mahmood F, Balazs AC, Aizenberg J, Saravanamuttu K. Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with remote interactions. Proceedings of the National Academy of Sciences. 2020;117 (8) :3953. Publisher's VersionAbstract
Self-trapped light beams hold potential for optical interconnects, applications in image transmission, rerouting light, logic gates for computing and, importantly, for the next-generation light-guiding-light signal processing, which envisions a circuitry-free and reconfigurable photonics powered by the dynamic interactions of self-trapped beams. In conventional nonlinear materials, however, self-trapping suffers from either the need for large incident beam powers and loss of beam interactions at large distances, or it is slow and irreversible. We show that rapidly and repeatably switchable self-trapped laser beams with remote communication capabilities can be elicited at exceptionally small intensities in a pliant, processable hydrogel functionalized with a chromophore. The ability to generate self-trapped beams with this unique set of properties offers unprecedented opportunities to develop light-guiding-light technologies.Next-generation photonics envisions circuitry-free, rapidly reconfigurable systems powered by solitonic beams of self-trapped light and their particlelike interactions. Progress, however, has been limited by the need for reversibly responsive materials that host such nonlinear optical waves. We find that repeatedly switchable self-trapped visible laser beams, which exhibit strong pairwise interactions, can be generated in a photoresponsive hydrogel. Through comprehensive experiments and simulations, we show that the unique nonlinear conditions arise when photoisomerization of spiropyran substituents in pH-responsive poly(acrylamide-co-acrylic acid) hydrogel transduces optical energy into mechanical deformation of the 3D cross-linked hydrogel matrix. A Gaussian beam self-traps when localized isomerization-induced contraction of the hydrogel and expulsion of water generates a transient waveguide, which entraps the optical field and suppresses divergence. The waveguide is erased and reformed within seconds when the optical field is sequentially removed and reintroduced, allowing the self-trapped beam to be rapidly and repeatedly switched on and off at remarkably low powers in the milliwatt regime. Furthermore, this opto-chemo-mechanical transduction of energy mediated by the 3D cross-linked hydrogel network facilitates pairwise interactions between self-trapped beams both in the short range where there is significant overlap of their optical fields, and even in the long range––over separation distances of up to 10 times the beam width––where such overlap is negligible.