New Architectures for Designed Catalysts: Selective Oxidation using AgAu Nanoparticles on Colloid-Templated Silica


Shirman T, Lattimer J, Luneau M, Shirman E, Reece C, Aizenberg M, Madix RJ, Aizenberg J, Friend CM. New Architectures for Designed Catalysts: Selective Oxidation using AgAu Nanoparticles on Colloid-Templated Silica. Chem. Eur. J. [Internet]. 2018;24 :1833 –1837 .


A highly modular synthesis of designed catalysts with controlled bimetallic nanoparticle size and composition and a well-defined structural hierarchy is demonstrated. Exemplary catalysts—bimetallic dilute Ag-in-Au nanoparticles partially embedded in a porous SiO2 matrix (SiO2–AgxAuy)— were synthesized by the decoration of polymeric colloids with the bimetallic nanoparticles followed by assembly into a colloidal crystal backfilled with the matrix precursor and subsequent removal of the polymeric template. This work reports that these new catalyst architectures are significantly better than nanoporous dilute AgAu alloy catalysts (nanoporous Ag3Au97) while retaining a clear predictive relationship between their surface reactivity with that of single-crystal Au surfaces. This paves the way for broadening the range of new catalyst architectures required for translating the designed principles developed under controlled conditions to designed catalysts under operating conditions for highly selective coupling of alcohols to form esters. Excellent catalytic performance of the porous SiO2–AgxAuy structure for selective oxidation of both methanol and ethanol to produce esters with high conversion efficiency, selectivity, and stability was demonstrated, illustrating the ability to translate design principles developed for support-free materials to the colloid-templated structures. The synthetic methodology reported is customizable for the design of a wide range of robust catalytic systems inspired by design principles derived from model studies. Fine control over the composition, morphology, size, distribution, and availability of the supported nanoparticles was demonstrated.


This work was supported as part of the Integrated Mesoscale Architectures for Sustainable Catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under award #DE-SC0012573. T.S. acknowledges support from the Weizmann Institute of Science—National Postdoctoral Award Program for Advancing Women in Science. This work was performed in part at the Harvard University Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF ECCS award no. 1541959.

Publisher's Version

Last updated on 05/08/2018