Hatton BD, Wheeldon I, Hancock MJ, Kolle M, Aizenberg J, Ingber DE. An artificial vasculature for adaptive thermal control of windows. Solar Energy Materials and Solar Cells [Internet]. 2013;117 :429-436. Publisher's VersionAbstract
Windows are a major source of energy inefficiency in buildings. In addition, heating by thermal radiation reduces the efficiency of photovoltaic panels. To help reduce heating by solar absorption in both of these cases, we developed a thin, transparent, bio-inspired, convective cooling layer for building windows and solar panels that contains microvasculature with millimeter-scale, fluid-filled channels. The thin cooling layer is composed of optically clear silicone rubber with microchannels fabricated using microfluidic engineering principles. Infrared imaging was used to measure cooling rates as a function of flow rate and water temperature. In these experiments, flowing room temperature water at 2 mL/min reduced the average temperature of a model 10×10 cm2 window by approximately 7–9 °C. An analytic steady-state heat transfer model was developed to augment the experiments and make more general estimates as functions of window size, channel geometry, flow rate, and water temperature. Thin cooling layers may be added to one or more panes in multi-pane windows or as thin film non-structural central layers. Lastly, the color, optical transparency and aesthetics of the windows could be modulated by flowing different fluids that differ in their scattering or absorption properties.
Friedlander RS, Vlamakis H, Kim P, Khan M, Kolter R, Aizenberg J. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc. Nat. Acad. Sci. [Internet]. 2013;110 (14) :5624-5629. Publisher's VersionAbstract
Biofilms, surface-bound communities of microbes, are economically and medically important due to their pathogenic and obstructive properties. Among the numerous strategies to prevent bacterial adhesion and subsequent biofilm formation, surface topography was recently proposed as a highly nonspecific method that does not rely on small-molecule antibacterial compounds, which promote resistance. Here, we provide a detailed investigation of how the introduction of submicrometer crevices to a surface affects attachment of Escherichia coli. These crevices reduce substrate surface area available to the cell body but increase overall surface area. We have found that, during the first 2 h, adhesion to topographic surfaces is significantly reduced compared with flat controls, but this behavior abruptly reverses to significantly increased adhesion at longer exposures. We show that this reversal coincides with bacterially induced wetting transitions and that flagellar filaments aid in adhesion to these wetted topographic surfaces. We demonstrate that flagella are able to reach into crevices, access additional surface area, and produce a dense, fibrous network. Mutants lacking flagella show comparatively reduced adhesion. By varying substrate crevice sizes, we determine the conditions under which having flagella is most advantageous for adhesion. These findings strongly indicate that, in addition to their role in swimming motility, flagella are involved in attachment and can furthermore act as structural elements, enabling bacteria to overcome unfavorable surface topographies. This work contributes insights for the future design of antifouling surfaces and for improved understanding of bacterial behavior in native, structured environments.
Epstein AK, Hong D, Kim P, Aizenberg J. Biofilm attachment reduction on bioinspired, dynamic, microwrinkling surfaces. New J. Phys [Internet]. 2013;15 :095018. Publisher's VersionAbstract
Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1–100 mm s−1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to  ~ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and  ~ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than  ~ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of  ~ 1 μm. Divergent effects on the attachment of P. aeruginosaStaphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.
Kolle M, Lethbridge A, Kreysing M, Baumberg JJ, Aizenberg J, Vukusic P. Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers. Adv. Mater. [Internet]. 2013;25 (15) :2239-2245. Full Text
Kang SH, Shan S, Noorduin WL, Khan M, Aizenberg J, Bertoldi K. Buckling-Induced Reversible Symmetry Breaking and Amplification of Chirality Using Supported Cellular Structures. Adv. Mater. [Internet]. 2013;25 (24) :3380-3385. Publisher's Version
He X, Friedlander RS, Zarzar LD, Aizenberg J. Chemo-Mechanically Regulated Oscillation of an Enzymatic Reaction. Chem. Mater. [Internet]. 2013;25 (4) :521-523. Publisher's Version
Burgess IB, Aizenberg J, Loncar M. Creating bio-inspired hierarchical 3D–2D photonic stacks via planar lithography on self-assembled inverse opals. Bioinspiration & Biomimetics [Internet]. 2013;8 :045004. Publisher's VersionAbstract
Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top–down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top–down and bottom–up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top–down and bottom–up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D–2D photonic crystal devices.
Kats MA, Byrnes SJ, Blanchard R, Kolle M, Genevet P, Aizenberg J, Capasso F. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings. Appl. Phys. Lett. [Internet]. 2013;103 :101104. Publisher's VersionAbstract
Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.
Kim P, Kreder MJ, Alvarenga J, Aizenberg J. Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates. Nano Lett. [Internet]. 2013;13 (4) :1793-1799. Publisher's VersionAbstract
Lubricant-infused textured solid substrates are gaining remarkable interest as a new class of omni-repellent nonfouling materials and surface coatings. We investigated the effect of the length scale and hierarchy of the surface topography of the underlying substrates on their ability to retain the lubricant under high shear conditions, which is important for maintaining nonwetting properties under application-relevant conditions. By comparing the lubricant loss, contact angle hysteresis, and sliding angles for water and ethanol droplets on flat, microscale, nanoscale, and hierarchically textured surfaces subjected to various spinning rates (from 100 to 10 000 rpm), we show that lubricant-infused textured surfaces with uniform nanofeatures provide the most shear-tolerant liquid-repellent behavior, unlike lotus leaf-inspired superhydrophobic surfaces, which generally favor hierarchical structures for improved pressure stability and low contact angle hysteresis. On the basis of these findings, we present generalized, low-cost, and scalable methods to manufacture uniform or regionally patterned nanotextured coatings on arbitrary materials and complex shapes. After functionalization and lubrication, these coatings show robust, shear-tolerant omniphobic behavior, transparency, and nonfouling properties against highly contaminating media.
Grinthal A, Aizenberg J. Hydrogel-Actuated Integrated Responsive Systems (HAIRS): Creating Cilia-like "Hairy" Surfaces. In: den Toonder J, Onck P Cambridge, U.K. RSC ; 2013. pp. 162-185.
Kim P, Alvarenga J, Aizenberg J, Sleeper RS. Hydroglyphics: Demonstration of Selective Wetting on Hydrophilic and Hydrophobic Surfaces. J. Chem. Educ. [Internet]. 2013. Publisher's Version
Wilson PW, Lu W, Xu H, Kim P, Kreder MJ, Alvarenga J, Aizenberg J. Inhibition of Ice Nucleation by Slippery Liquid-Infused Porous Surfaces (SLIPS). Physical Chemistry Chemical Physics [Internet]. 2013;15 :581-585. Full TextAbstract
Ice repellent coatings have been studied and keenly sought after for many years, where any advances in the durability of such coatings will result in huge energy savings across many fields. Progress in creating anti-ice and anti-frost surfaces has been particularly rapid since the discovery and development of slippery, liquid infused porous surfaces (SLIPS). Here we use SLIPS-coated differential scanning calorimeter (DSC) pans to investigate the effects of the surface modification on the nucleation of supercooled water. This investigation is inherently different from previous studies which looked at the adhesion of ice to SLIPS surfaces, or the formation of ice under high humidity conditions. Given the stochastic nature of nucleation of ice from supercooled water, multiple runs on the same sample are needed to determine if a given surface coating has a real and statistically significant effect on the nucleation temperature. We have cycled supercooling to freezing and then thawing of deionized water in hydrophilic (untreated aluminum), hydrophobic, superhydrophobic, and SLIPS-treated DSC pans multiple times to determine the effects of surface treatment on the nucleation and subsequent growth of ice. We find that SLIPS coatings lower the nucleation temperature of supercooled water in contact with statistical significance and show no deterioration or change in the coating performance even after 150 freeze–thaw cycles.
Daniel D, Mankin MN, Belisle RA, Wong T-S, Aizenberg J. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures. Appl. Phys. Lett. [Internet]. 2013;102 :231603. Full TextAbstract
Omniphobic surfaces that can repel fluids at temperatures higher than 100 °C are rare. Most state-of-the-art liquid-repellent materials are based on the lotus effect, where a thin air layer is maintained throughout micro/nanotextures leading to high mobility of liquids. However, such behavior eventually fails at elevated temperatures when the surface tension of test liquids decreases significantly. Here, we demonstrate a class of lubricant-infused structuredsurfaces that can maintain a robust omniphobic state even for low-surface-tension liquids at temperatures up to at least 200 °C. We also demonstrate how liquid mobility on such surfaces can be tuned by a factor of 1000.
Kim P, Hu Y, Alvarenga J, Kolle M, Suo Z, Aizenberg J. Rational Design of Mechano-Responsive Optical Materials by Fine Tuning the Evolution of Strain-Dependent Wrinkling Patterns. Adv. Optical Mater. [Internet]. 2013;1 (5) :381-388. Publisher's VersionAbstract
Rational design strategies for mechano‐responsive optical material systems are created by introducing a simple experimental system that can continuously vary the state of bi‐axial stress to induce various wrinkling patterns, including stripes, labyrinths, herringbones, and rarely observed checkerboards, that can dynamically tune the optical properties. In particular, a switching of two orthogonally oriented stripe wrinkle patterns from oxidized polydimethylsiloxane around the critical strain value is reported, as well as the coexistence of these wrinkles forming elusive checkerboard patterns, which are predicted only in previous simulations. These strain‐induced wrinkle patterns give rise to dynamic changes in optical transmittance and diffraction patterns. A theoretical description of the observed pattern formation is presented which accounts for the residual stress in the membrane and allows for the fine‐tuning of the window of switching of the orthogonal wrinkles. Applications of wrinkle‐induced changes in optical properties are demonstrated, including a mechanically responsive instantaneous privacy screen and a transparent sheet that reversibly reveals a message or graphic and dynamically switches the transmittance when stretched and released.
Noorduin W, Grinthal A, Mahadevan L, Aizenberg J. Rationally Designed Complex Hierarchical Microarchitectures. Science [Internet]. 2013;340 :832-837. Publisher's VersionAbstract
The emergence of complex nano- and microstructures is of fundamental interest, and the ability to program their form has practical ramifications in fields such as optics, catalysis, and electronics. We developed carbonate-silica microstructures in a dynamic reaction-diffusion system that allow us to rationally devise schemes for precisely sculpting a great variety of elementary shapes by diffusion of carbon dioxide (CO2) in a solution of barium chloride and sodium metasilicate. We identify two distinct growth modes and show how continuous and discrete modulations in CO2 concentration, pH, and temperature can be used to deterministically switch between different regimes and create a bouquet of hierarchically assembled multiscale microstructures with unprecedented levels of complexity and precision. These results outline a nanotechnology strategy for "collaborating" with self-assembly processes in real time to build arbitrary tectonic architectures.
Mishchenko L, Aizenberg J, Hatton BD. Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches. Adv. Funct. Mater. [Internet]. 2013;23 (36) :4577-4584. Publisher's VersionAbstract
Certain natural organisms use micro‐patterned surface chemistry, or ice‐nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom‐up deposition process is used to take advantage of the limited contact area of a non‐wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescence of micrometer‐scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice‐nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer‐scale condensation and freezing phenomena, and as a model for natural systems.
Burgess IB, Loncar M, and Aizenberg J. Structural Colour in Colourimetric Sensors and Indicators. J. Mater. Chem. C [Internet]. 2013;1 (38) :6075-6086. Publisher's VersionAbstract
Colourimetric sensors and indicators are widely used because of their low cost and simplicity. A significant challenge associated with the design of this type of device is that the sensing mechanism must be simultaneously optimised for the sensitivity of the response and a visually perceptible colour change. Structural colour, derived from coherent scattering rather than molecular absorption, is a promising route to colourimetric sensor design because colour shifts are tied to changes in one of many physical properties of a material, rather than a specific chemical process. This Feature Article presents an overview of the development of low-cost sensors and indicators that exploit structural colour. Building upon recent advances in structurally adaptive materials design, structural colour sensors have been developed for a wide variety of previously inaccessible physical (e.g. temperature, strain, electric fields) and chemical stimuli (e.g. small organic molecules, charged species, biomacromolecules and metabolites). These devices, often exceeding the state of the art in performance, simplicity or both, have bright prospects for market impact in areas such as environmental monitoring, workplace hazard identification, threat detection, and point-of-care diagnostics. Finding the ideal balance between performance (e.g. sensitivity, specificity, reproducibility, etc.) and simplicity (e.g. colourimetric vs. spectroscopic readout) will be one of the most critical elements in the further development of structural colour sensors. This balance should be driven largely by the market demands and competing technologies.
Vogel N, Belisle RA, Hatton B, Wong TS, Aizenberg J. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nature Communications [Internet]. 2013;4. Publisher's VersionAbstract
A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show how this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.
Raymond KP, Burgess IB, Kinney MH, Loncar M, Aizenberg J. Combinatorial Wetting in Colour: An Optofluidic Nose. Lab on a Chip. 2012;12 :3666-3669. LabChip2012.Raymond.pdf
Kim P, Adorno-Martinez WE, Khan M, and Aizenberg J. Enriching libraries of high-aspect-ratio micro- or nanostructures by rapid, low-cost, benchtop nanofabrication. Nature Protocols. 2012;7 (2) :311–327. 2012_Kim_natprot.pdf